Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46496
Título: Texture classification through multiscale orientation histogram analysis
Autores/as: Alemán-Flores, Miguel 
Álvarez-Leon, Luis 
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
Palabras clave: Multi scale analysis
New approaches
Orientation histograms
Reliable methods
Scale Factor, et al.
Fecha de publicación: 2003
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 4th International Conference on Scale Space Methods in Computer Vision 
Resumen: This work presents a new approach to texture classification, in which orientation histograms and multiscale analysis have been combined to achieve a reliable method. From the outputs of a set of filters, the orientation and magnitude of the gradient in every point of a texture are estimated. By combining the orientations and relative magnitudes of the gradient, we build an orientation histogram for each texture. We have used Fourier analysis to measure the similarity between the histograms of different textures, considering the effects of a change in the size or orientation of the image to make our method invariant under these phenomena. Since different textures may generate very similar histograms, we have analyzed the evolution of these histograms at different scales, extracting a scale factor for each couple of compared textures to adjust the filters which are applied to them when the multiscale analysis is carried out.
URI: http://hdl.handle.net/10553/46496
ISBN: 978-3-540-40368-5
ISSN: 0302-9743
DOI: 10.1007/3-540-44935-3_33
Fuente: Griffin L.D., Lillholm M. (eds) Scale Space Methods in Computer Vision. Scale-Space 2003. Lecture Notes in Computer Science, vol 2695. Springer, Berlin, Heidelberg
Colección:Artículos
miniatura
pdf
Adobe PDF (916,13 kB)
Vista completa

Citas SCOPUSTM   

6
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 25-feb-2024

Visitas

83
actualizado el 27-abr-2024

Descargas

203
actualizado el 27-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.