Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/46214
Title: | On the initial growth of interfaces in reaction-diffusion equations with strong absorption | Authors: | Alvarez, Luis Diaz, Jesus Ildefonso |
UNESCO Clasification: | 1206 Análisis numérico 120601 Construcción de algoritmos 120602 Ecuaciones diferenciales |
Keywords: | Heat-Equation Thermal Waves Media |
Issue Date: | 1993 | Journal: | Proceedings of the Royal Society of Edinburgh Section A: Mathematics | Abstract: | We study the initial growth of the interfaces of non-negative local solutions of the equation u(t) = (u(m))xx - lambdau(q) when m greater-than-or-equal-to 1 and 0 < q < 1. We show that if u(x, 0) greater-than-or-equal-to C(-x)+2/(m-q) with C > C0, for some explicit C0 = C0(lambda, m, q), then the free boundary zeta(t) = sup {x: u(x, t) > 0} is a ''heating front''. More precisely zeta(t) greater-than-or-equal-to at(m-q)/2(1-q) for any t small enough and for some a > 0. If on the contrary, u(x, 0) less-than-or-equal-to C(-x)+2/(m-q) with C < C0, then zeta(t) is a ''cooling front'' and in fact zeta(t) less-than-or-equal-to -at(m-q)/2(1-q) for any t small enough and for some a > 0. Applications to solutions of the associated Cauchy and Dirichlet problems are also given. | URI: | http://hdl.handle.net/10553/46214 | ISSN: | 0308-2105 | DOI: | 10.1017/S0308210500029504 | Source: | Proceedings of the Royal Society of Edinburgh: Section A Mathematics [ISSN 0308-2105], v.123 (5), p. 803-817 |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
8
checked on Jul 17, 2022
WEB OF SCIENCETM
Citations
6
checked on Nov 24, 2024
Page view(s)
102
checked on Apr 20, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.