Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46167
Campo DC Valoridioma
dc.contributor.authorCamino, Jose L.en_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.contributor.authorMorales, Ciro R.en_US
dc.contributor.authorFerrer, Miguel A.en_US
dc.date.accessioned2018-11-23T01:58:16Z-
dc.date.available2018-11-23T01:58:16Z-
dc.date.issued1999en_US
dc.identifier.urihttp://hdl.handle.net/10553/46167-
dc.description.abstractSignature recognition is a relevant area in secure applications referred to as biometric identification. The image of the signature to be recognized (in off-line systems) can be considered as a spatio-temporal signal due to the shapely geometric and sequential character of the pencil drawing. The recognition and classification methods known to us are based on the extraction of geometric parameters and their classification by either a linear or nonlinear classifier. This procedure neglects the temporal information of the signature. In order to alleviate this, this paper proposes to use signature parameters with spatio-temporal information and its classification by a classifier capable of dealing with spatio-temporal problems as hidden Markov models (HMM). The proposed parameters are calculated in two stages; first, the preprocessing stage which includes noise reduction and outline detection through a skeletonization or thinning algorithm; and second, a parameterization stage in which the signature is encoded following the signature line and recording the length and direction of the pencil drawing obtaining a vector that includes the signature spatio-temporal information. The classification of the above parameters is done by a HMM classifier working in the same way as isolated word recognition systems. To design (train and test) the HMM classifier we have built a database of 24 signatures of 60 different writers.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Annual International Carnahan Conference on Security Technology, Proceedingsen_US
dc.sourceIEEE Annual International Carnahan Conference on Security Technology, Proceedings, p. 481-484en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherHandwriting recognitionen_US
dc.subject.otherHidden Markov modelsen_US
dc.subject.otherImage recognitionen_US
dc.subject.otherCharacter recognitionen_US
dc.subject.otherData miningen_US
dc.subject.otherNoise reductionen_US
dc.subject.otherBiometricsen_US
dc.titleSignature classification by Hidden Markov Modelen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceProceedings of the 1999 IEEE 33rd Annual International Carnahan Conference on Security Technology
dc.identifier.scopus0033359140-
dc.contributor.authorscopusid6701777195-
dc.contributor.authorscopusid6602376272-
dc.contributor.authorscopusid7202531352-
dc.contributor.authorscopusid55636321172-
dc.description.lastpage484en_US
dc.description.firstpage481en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 1999
dc.identifier.conferenceidevents121253
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.event.eventsstartdate05-10-1999-
crisitem.event.eventsenddate07-10-1999-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.