Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46166
Título: Improving generalization ability of HMM/NNs based classifiers
Autores/as: Ferrer, Miguel A. 
Alonso, Itziar G.
Travieso, Carlos M. 
Figueiras-Vidal, Anibal R.
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Handwriting recognition
Hidden Markov models
Speech recognition
Artificial neural networks
Standards
Fecha de publicación: 2000
Publicación seriada: European Signal Processing Conference
Conferencia: 2000 10th European Signal Processing Conference, EUSIPCO 2000 
Resumen: Standard Hidden Markov Models (HMM) have proved to be a very useful tool for temporal sequence pattern recognition, although they present a poor discriminative power. On the contrary Neural Networks (NNs) have been recognized as powerful tools for classification task, but they are less efficient to model temporal variation than HMM. In order to get the advantages of both HMMs and NNs, different hybrid structures have been proposed. In this paper we suggest a HMM/NN hybrid where the NN classify from HMM scores. As NN we have used a committee of networks. As networks of the committee we have used a Multilayer Perceptron (MLP: a global classifier) and Radial Basis Function (RBF: a local classifier) nets which drawn conceptually different interclass borders. The combining algorithm is the TopNSeg scoring method which sum the top N ranked networks normalized outputs for each class. The test of above architecture with speech recognition, handwritten numeral classification, and signature verification problems show that this architecture works significantly better than the isolated networks.
URI: http://hdl.handle.net/10553/46166
ISSN: 2219-5491
Fuente: European Signal Processing Conference[ISSN 2219-5491],v. 2015-March (7075437)
Colección:Actas de congresos
miniatura
Adobe PDF (89,8 kB)
Vista completa

Visitas

109
actualizado el 01-nov-2024

Descargas

32
actualizado el 01-nov-2024

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.