Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46162
Campo DC Valoridioma
dc.contributor.authorFaundez-Zanuy, Marcosen_US
dc.contributor.authorElizondo, David A.en_US
dc.contributor.authorFerrer-Ballester, Miguel Ángelen_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.contributor.otherTravieso-Gonzalez, Carlos M.-
dc.contributor.otherFaundez-Zanuy, Marcos-
dc.contributor.otherFerrer, Miguel A-
dc.contributor.otherElizondo, David-
dc.date.accessioned2018-11-23T01:55:50Z-
dc.date.available2018-11-23T01:55:50Z-
dc.date.issued2007en_US
dc.identifier.issn1370-4621en_US
dc.identifier.urihttp://hdl.handle.net/10553/46162-
dc.description.abstractBiometric based systems for individual authentication are increasingly becoming indispensable for protecting life and property. They provide ways for uniquely and reliably authenticating people, and are difficult to counterfeit. Biometric based authenticity systems are currently used in governmental, commercial and public sectors. However, these systems can be expensive to put in place and often impose physical constraint to the users. This paper introduces an inexpensive, powerful and easy to use hand geometry based biometric person authentication system using neural networks. The proposed approach followed to construct this system consists of an acquisition device, a pre-processing stage, and a neural network based classifier. One of the novelties of this work comprises on the introduction of hand geometry’s related, position independent, feature extraction and identification which can be useful in problems related to image processing and pattern recognition. Another novelty of this research comprises on the use of error correction codes to enhance the level of performance of the neural network model. A dataset made of scanned images of the right hand of fifty different people was created for this study. Identification rates and Detection Cost Function (DCF) values obtained with the system were evaluated. Several strategies for coding the outputs of the neural networks were studied. Experimental results show that, when using Error Correction Output Codes (ECOC), up to 100% identification rates and 0% DCF can be obtained. For comparison purposes, results are also given for the Support Vector Machine method.en_US
dc.languageengen_US
dc.publisher1370-4621
dc.relation.ispartofNeural Processing Lettersen_US
dc.sourceNeural Processing Letters[ISSN 1370-4621],v. 26, p. 201-216en_US
dc.subject.otherBiometricsen_US
dc.subject.otherHand geometryen_US
dc.subject.otherBiometrical featuresen_US
dc.subject.otherFeature extractionen_US
dc.subject.otherFeature identificationen_US
dc.subject.otherAuthentication of individualen_US
dc.subject.otherNeural networken_US
dc.titleAuthentication of individuals using hand geometry biometrics: A neural network approachen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11063-007-9052-y
dc.identifier.scopus35548983443-
dc.identifier.isi000250407900005-
dcterms.isPartOfNeural Processing Letters
dcterms.sourceNeural Processing Letters[ISSN 1370-4621],v. 26 (3), p. 201-216
dc.contributor.authorscopusid6701452104-
dc.contributor.authorscopusid6701557179-
dc.contributor.authorscopusid55636321172-
dc.contributor.authorscopusid6602376272-
dc.description.lastpage216en_US
dc.description.firstpage201en_US
dc.relation.volume26en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000250407900005-
dc.contributor.daisngid259157-
dc.contributor.daisngid573270-
dc.contributor.daisngid4492603-
dc.contributor.daisngid265761
dc.contributor.daisngid29266487-
dc.identifier.investigatorRIDN-5967-2014-
dc.identifier.investigatorRIDF-6503-2012-
dc.identifier.investigatorRIDL-3863-2013-
dc.identifier.investigatorRIDA-5048-2009-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Faundez-Zanuy, M
dc.contributor.wosstandardWOS:Elizondo, DA
dc.contributor.wosstandardWOS:Ferrer-Ballester, MA
dc.contributor.wosstandardWOS:Travieso-Gonzalez, CM
dc.date.coverdateDiciembre 2007
dc.identifier.ulpgces
dc.description.jcr0,58
dc.description.jcrqQ3
dc.description.scieSCIE
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
miniatura
Adobe PDF (521,43 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.