Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46147
Título: A new method for sclera vessel recognition using OLBP
Autores/as: Das, Abhijit
Pal, Umapada
Ferrer Ballester, Miguel A. 
Blumenstein, Michael
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Sclera Biometric
Sclera vessels
Patterns
Haar filter
OLBP, et al.
Fecha de publicación: 2013
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 2012 International Conference on Service-Oriented Computing, ICSOC 2012 
Resumen: This paper proposes a new sclera vessel recognition technique. The vesselpatterns of sclera are unique for each individual and this can be utilized to identify a person uniquely. In this research we have used a time adaptive active contour-based region growing technique for sclera segmentation. Prior to that, we have made some tonal and illumination correction to get a clearer sclera area without the distributing vessel structure. This is because the presence of complex vessel structures occasionally affects the region-growing process. The sclera vessels are not prominent in the images, so in order to make them clearly visible, a local image enhancement process using a Haar high pass filter is incorporated. To get the total orientation of the vessels, we have used Orientated Local Binary Pattern (OLBP). The OLBP images of each class are used for template matching for classification by calculating the minimum Hamming Distance. We have used the UBIRIS version 1 dataset for the experimentation of our research. The proposed approach has achieved high recognition accuracy employing the above-mentioned dataset.
URI: http://hdl.handle.net/10553/46147
ISBN: 9783319029603
ISSN: 0302-9743
DOI: 10.1007/978-3-319-02961-0_46
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 8232 LNCS, p. 370-377
Colección:Actas de congresos
miniatura
Adobe PDF (659,67 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.