Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/45554
Title: | Calculation of radiative opacity of plasma mixtures using a relativistic screened hydrogenic model | Authors: | Mendoza, M.A. Rubiano, J. G. Gil, J. M. Rodriguez, R. Florido, R. Espinosa, G. Martel, P. Mínguez, Emilio |
UNESCO Clasification: | 2207 Física atómica y nuclear 220410 Física de plasmas |
Keywords: | Screened Hydrogenic Model Average atom model Opacity Rosseland and Planck mean opacities Hot and dense plasmas |
Issue Date: | 2014 | Project: | Determinación de Propiedades Radiativas, Termodinamicas y Diagnosis Espectroscopica de Plasmas de Interés Científico-Tecnológico SOLSUBC2008000057 (Agencia Canaria de Investigación, Innovación y Sociedad de la Información, Gobierno de Canarias) Keep-in Touch (UE) |
Journal: | Journal of Quantitative Spectroscopy and Radiative Transfer | Abstract: | We present the code ATMED based on an average atom model and conceived for fast computing the population distribution and radiative properties of hot and dense single and multicomponent plasmas under LTE conditions. A relativistic screened hydrogenic model (RSHM), built on a new set of universal constants considering j-splitting, is used to calculate the required atomic data. The opacity model includes radiative bound–bound, bound–free, free–free, and scattering processes. Bound–bound line-shape function has contributions from natural, Doppler and electron-impact broadenings. An additional dielectronic broadening to account for fluctuations in the average level populations has been included, which improves substantially the Rosseland mean opacity results. To illustrate the main features of the code and its capabilities, calculations of several fundamental quantities of one-component plasmas and mixtures are presented, and a comparison with previously published data is performed. Results are satisfactorily compared with those predicted by more elaborate codes. | URI: | http://hdl.handle.net/10553/45554 | ISSN: | 0022-4073 | DOI: | 10.1016/j.jqsrt.2014.02.015 | Source: | Journal Of Quantitative Spectroscopy and Radiative Transfer [ISSN 0022-4073], v. 140, p. 81-98 |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
7
checked on Nov 17, 2024
WEB OF SCIENCETM
Citations
7
checked on Nov 17, 2024
Page view(s)
92
checked on Oct 12, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.