Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/45552
Title: | Collisional radiative average atom code based on a relativistic Screened Hydrogenic Model | Authors: | Benita, A. J. Mínguez, Emilio Mendoza, M.A. Rubiano, Jesus G. Florido, Ricardo Gil, J. M. Rodríguez, R. Martel, Pablo |
UNESCO Clasification: | 2207 Física atómica y nuclear | Keywords: | Screened Hydrogenic Model Average atom model Collisional radiative code Opacity Rosseland and Planck mean opacities, et al |
Issue Date: | 2015 | Project: | Determinación de Propiedades Radiativas, Termodinamicas y Diagnosis Espectroscopica de Plasmas de Interés Científico-Tecnológico SOLSUBC2008000057 (Agencia Canaria de Investigación, Innovación y Sociedad de la Información, Gobierno de Canarias) |
Journal: | High Energy Density Physics | Abstract: | A steady-state and time-dependent collisional-radiative ‘‘average-atom’’ (AA) model (ATMED CR) is presented for the calculation of atomic and radiative properties of plasmas for a wide range of laboratory and theoretical conditions: coronal, local thermodynamic equilibrium or nonlocal thermodynamic equilibrium, optically thin or thick plasmas and photoionized plasmas. The radiative and collisional rates are a set of analytical approximations that compare well with more sophisticated quantum treatment of atomic rates that yield fast calculations. The atomic model is based on a new Relativistic Screened Hydrogenic Model (NRSHM) with a set of universal screening constants including nlj-splitting that has been obtained by fitting to a large database of ionization potentials and excitation energies compiled from the National Institute of Standards and Technology (NIST) database and the Flexible Atomic Code (FAC). The model NRSHM has been validated by comparing the results with ionization energies, transition energies and wave functions computed using sophisticated self-consistent codes and experimental data. All the calculations presented in this work were performed using ATMED CR code. | URI: | http://hdl.handle.net/10553/45552 | ISSN: | 1574-1818 | DOI: | 10.1016/j.hedp.2015.02.004 | Source: | High Energy Density Physics [ISSN 1574-1818], v. 14, p. 18-29 |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.