Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/45510
DC FieldValueLanguage
dc.contributor.authorRomero-Alemán, M. M.
dc.contributor.authorMonzón-Mayor, M.
dc.contributor.authorSantos, E.
dc.contributor.authorLang, D. M.
dc.contributor.authorYanes, C.
dc.contributor.otherLang, Dirk
dc.contributor.otherROMERO-ALEMAN, MARIA DEL MAR
dc.contributor.otherMonzon-Mayor, Maximina
dc.date.accessioned2018-11-22T10:24:44Z-
dc.date.available2018-11-22T10:24:44Z-
dc.date.issued2012
dc.identifier.issn0021-9967
dc.identifier.urihttp://hdl.handle.net/10553/45510-
dc.description.abstractWe studied the histogenesis of the lizard visual system (E30 to adulthood) by using a selection of immunohistochemical markers that had proved relevant for other vertebrates. By E30, the Pax6+ pseudostratified retinal epithelium shows few newborn retinal ganglion cells (RGCs) in the centrodorsal region expressing neuron- and synaptic-specific markers such as betaIII-tubulin (Tuj1), synaptic vesicle protein-2 (SV2), and vesicular glutamate transporter-1 (VGLUT1). Concurrently, pioneer RGC axons run among the Pax2+ astroglia in the optic nerve and reach the superficial optic tectum. Between E30 and E35, the optic chiasm and optic tract remain acellular, but the latter contains radial processes with subpial endfeet expressing vimentin (Vim). From E35, neuron- and synaptic-specific stainings spread in the retina and optic tectum, whereas retinal Pax6, and Tuj1/SV2 in RGC axons decrease. Muller glia and abundant optic nerve glia express a variety of glia-specific markers until adulthood. Subpopulations of optic nerve glia are also VGLUT1+ and cluster differentiation-44 (CD44)-positive but cytokeratin-negative, unlike the case in other regeneration-competent species. Specifically, coexpression of CD44/Vim and glutamine synthetase (GS)/VGLUT1 reflects glial specialization, insofar as most CD44+ glia are GS-. In the adult optic tract and tectum, radial glia and free astroglia coexist. The latter show different immunocharacterization (Pax2-/CD44-/Vim-) compared with that in the optic nerve. We conclude that upregulation of Tuj1 and SV2 is required for axonal outgrowth and search for appropriate targets, whereas Pax2+ optic nerve astroglia and Vim+ radial glia may aid in early axonal guidance. Spontaneous axonal regrowth seems to succeed despite the heterogeneous mammalian-like glial environment in the lizard optic nerve. J. Comp. Neurol. 520:21632184, 2012. (c) 2011 Wiley Periodicals, Inc.
dc.publisher0021-9967
dc.relation.ispartofJournal of Comparative Neurology
dc.sourceJournal of Comparative Neurology[ISSN 0021-9967],v. 520, p. 2163-2184
dc.subject.otherFibrillary Acidic Protein
dc.subject.otherIii Beta-Tubulin
dc.subject.otherFish Optic-Nerve
dc.subject.otherGlutamine-Synthetase
dc.subject.otherSonic-Hedgehog
dc.subject.otherAxon Growth
dc.subject.otherPostnatal-Development
dc.subject.otherRetinal Astrocytes
dc.subject.otherProgenitor Cells
dc.subject.otherGene-Expression
dc.titleNeuronal and glial differentiation during lizard (Gallotia galloti) visual system ontogeny
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1002/cne.23034
dc.identifier.scopus84859718273-
dc.identifier.isi000302708100005
dcterms.isPartOfJournal Of Comparative Neurology
dcterms.sourceJournal Of Comparative Neurology[ISSN 0021-9967],v. 520 (10), p. 2163-2184
dc.contributor.authorscopusid6506533545
dc.contributor.authorscopusid36793900900
dc.contributor.authorscopusid35084324600
dc.contributor.authorscopusid7202375282
dc.contributor.authorscopusid7004187530
dc.description.lastpage2184
dc.description.firstpage2163
dc.relation.volume520
dc.type2Artículoes
dc.identifier.wosWOS:000302708100005
dc.contributor.daisngid1157526
dc.contributor.daisngid901526
dc.contributor.daisngid2816094
dc.contributor.daisngid626938
dc.contributor.daisngid675718
dc.identifier.investigatorRIDI-2554-2015
dc.identifier.investigatorRIDK-8038-2014
dc.identifier.investigatorRIDNo ID
dc.contributor.wosstandardWOS:Romero-Aleman, MM
dc.contributor.wosstandardWOS:Monzon-Mayor, M
dc.contributor.wosstandardWOS:Santos, E
dc.contributor.wosstandardWOS:Lang, DM
dc.contributor.wosstandardWOS:Yanes, C
dc.date.coverdateJulio 2012
dc.identifier.ulpgces
dc.description.sjr2,686
dc.description.jcr3,661
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUIBS: Farmacología Molecular y Traslacional-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Morfología-
crisitem.author.deptGIR IUIBS: Tecnología Médica y Audiovisual-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.orcid0000-0002-7987-5509-
crisitem.author.orcid0000-0002-5046-508X-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameRomero Alemán, María Del Mar-
crisitem.author.fullNameMonzón Mayor,Maximina-
crisitem.author.fullNameYanes Mendez, Carmen M-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

13
checked on Nov 10, 2024

WEB OF SCIENCETM
Citations

14
checked on Nov 10, 2024

Page view(s)

74
checked on Oct 31, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.