Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/45238
Title: A new meccano technique for adaptive 3-D triangulations
Authors: Cascón, J. M.
Montenegro, R. 
Escobar, J. M. 
Rodriguez, E. 
Montero, G. 
UNESCO Clasification: 12 Matemáticas
Keywords: 3-d triangulations
Adaptive tetrahedral mesh
Discrete functions
Hexahedral mesh
Local refinement, et al
Issue Date: 2008
Project: Simulacion Numerica de Campos de Viento Orientados A Procesos Atmofericos. 
Diagnostico y Prediccion de Recursos Eolicos y Solares. 
Modelos Numéricos Predictores Para la Gestión Medioambiental. 
Conference: 16th International Meshing Roundtable 
16th International Meshing Roundtable, IMR 2007 
Abstract: This paper introduces a new automatic strategy for adaptive tetrahedral mesh generation. A local refinement/derefinement algorithm for nested triangulations and a simultaneous untangling and smoothing procedure are the main involved techniques. The mesh generator is applied to 3-D complex domains whose boundaries are projectable on external faces of a coarse object meccano composed of cuboid pieces. The domain surfaces must be given by a mapping between meccano surfaces and object boundary. This mapping can be defined by analytical or discrete functions. At present we have fixed mappings with orthogonal, cylindrical and radial projections, but any other one-to-one projection may be considered. The mesh generator starts from a coarse tetrahedral mesh which is automatically obtained by the subdivision of each hexahedra, of a meccano hexahedral mesh, into six tetrahedra. The main idea is to construct a sequence of nested meshes by refining only those tetrahedra which have a face on the meccano boundary. The virtual projection of meccano external faces defines a valid triangulation on the domain boundary. Then a 3-D local refinement/derefinement is carried out such that the approximation of domain surfaces verifies a given precision. Once this objective is reached, those nodes placed on the meccano boundary are really projected on their corresponding true boundary, and inner nodes are relocated using a suitable mapping. As the mesh topology is kept during node movement, poor quality or even inverted elements could appear in the resulting mesh. For this reason, we finally apply a mesh optimization procedure. The efficiency of the proposed technique is shown with several applications to complex objects.
URI: http://hdl.handle.net/10553/45238
ISBN: 978-354075102-1
DOI: 10.1007/978-3-540-75103-8_6
Source: Brewer M.L., Marcum D. (eds) Proceedings of the 16th International Meshing Roundtable. Springer, Berlin, Heidelberg
Appears in Collections:Actas de congresos
Show full item record

SCOPUSTM   
Citations

16
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

14
checked on Nov 17, 2024

Page view(s)

154
checked on Sep 28, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.