Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45007
Título: A new preprocessing technique for fast hyperspectral endmember extraction
Autores/as: Lopez, Sebastian 
Moure, Javier F.
Plaza, Antonio
Callico, Gustavo M. 
López, José Fco 
Sarmiento, Roberto 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Hyperspectral imaging
Algorithm design and analysis
Real-time systems
Accuracy
Earth
Fecha de publicación: 2013
Editor/a: 1545-598X
Publicación seriada: IEEE Geoscience and Remote Sensing Letters 
Resumen: Hyperspectral image processing represents a valuable tool for remote sensing of the Earth. This fact has led to the inclusion of hyperspectral sensors in different airborne and satellite missions for Earth observation. However, one of the main drawbacks encountered when dealing with hyperspectral images is the huge amount of data to be processed, in particular, when advanced analysis techniques such as spectral unmixing are used. The main contribution of this letter is the introduction of a novel preprocessing (PP) module, called SE 2 PP, which is based on the integration of spatial and spectral information. The proposed approach can be combined with existing algorithms for endmember extraction, reducing the computational complexity of those algorithms while providing similar figures of accuracy. The key idea behind SE 2 PP is to identify and select a reduced set of pixels in the hyperspectral image, so that there is no need to process a large amount of them to get accurate spectral unmixing results. Compared to previous approaches based on similar spatial and spatial-spectral PP strategies, SE 2 PP clearly outperforms their results in terms of accuracy and computation speed, as it is demonstrated with artificial and real hyperspectral images.
URI: http://hdl.handle.net/10553/45007
ISSN: 1545-598X
DOI: 10.1109/LGRS.2012.2229689
Fuente: IEEE Geoscience and Remote Sensing Letters[ISSN 1545-598X],v. 10 (6416920), p. 1070-1074
Colección:Artículos
Vista completa

Citas SCOPUSTM   

23
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

21
actualizado el 17-nov-2024

Visitas

115
actualizado el 29-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.