Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44976
Título: High level modular implementation of a lossy hyperspectral image compression algorithm on a FPGA
Autores/as: García Romero, Leví Aday 
Santos, Lucana 
Lopez, Sebastian 
Lopez, Jose Fco 
Sarmiento, Roberto 
Marrero, Gustavo 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Random access memory
Image coding
Algorithm design and analysis
Field programmable gate arrays
Hyperspectral imaging
Fecha de publicación: 2013
Editor/a: Institute of Electrical and Electronics Engineers (IEEE) 
Publicación seriada: Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing 
Conferencia: 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2013 
Resumen: In this paper, a Field Programmable Gate Array (FPGA) implementation of the LCE (Lossy Compression for ExoMars) algorithm is presented. This algorithm shows a good quality/compression ratio tradeoff for hyperspectral images, at the expenses of a higher complexity with respect to lossless algorithms. In order to deal with this complexity levels, high level synthesis (HLS) tools, such as Catapult C, have been used together with Precision RTL so that a final implementation was obtained in a Virtex-5 FPGA. The results show a performance slightly higher than a previous lossless/near-lossless algorithm implementation, in terms of operating frequency (87 MHz vs. 81 MHz), with a reduced number of memory blocks, at the expenses of an increase in the number of digital signal processing (DSP) slices used.
URI: http://hdl.handle.net/10553/44976
ISBN: 9781509011193
ISSN: 2158-6276
DOI: 10.1109/WHISPERS.2013.8080624
Fuente: Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing [ISSN 2158-6276], v. 2013-June (8080624)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

7
actualizado el 08-dic-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 25-feb-2024

Visitas

74
actualizado el 22-jul-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.