Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44657
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Garcia-Aloy, Mar | |
dc.contributor.author | Llorach, Rafael | |
dc.contributor.author | Urpi-Sarda, Mireia | |
dc.contributor.author | Tulipani, Sara | |
dc.contributor.author | Salas-Salvadó, Jordi | |
dc.contributor.author | Martínez-González, Miguel Angel | |
dc.contributor.author | Corella, Dolores | |
dc.contributor.author | Fitó, Montserrat | |
dc.contributor.author | Estruch, Ramon | |
dc.contributor.author | Serra-Majem, Lluis | |
dc.contributor.author | Andres-Lacueva, Cristina | |
dc.date.accessioned | 2018-11-22T01:25:21Z | - |
dc.date.available | 2018-11-22T01:25:21Z | - |
dc.date.issued | 2014 | |
dc.identifier.issn | 1573-3882 | |
dc.identifier.uri | http://hdl.handle.net/10553/44657 | - |
dc.description.abstract | © 2014, Springer Science+Business Media New York.Bread is one of the most widely consumed foods. Its impact on human health is currently of special interest for researchers. We aimed to identify biomarkers of bread consumption by applying a nutrimetabolomic approach to a free-living population. An untargeted HPLC–q-TOF-MS and multivariate analysis was applied to human urine from 155 subjects stratified by habitual bread consumption in three groups: non-consumers of bread (n = 56), white-bread consumers (n = 48) and whole-grain bread consumers (n = 51). The most differential metabolites (variable importance for projection ≥1.5) included compounds originating from cereal plant phytochemicals such as benzoxazinoids and alkylresorcinol metabolites, and compounds produced by gut microbiota (such as enterolactones, hydroxybenzoic and dihydroferulic acid metabolites). Pyrraline, riboflavin, 3-indolecarboxylic acid glucuronide, 2,8-dihydroxyquinoline glucuronide and N-α-acetylcitrulline were also tentatively identified. In order to combine multiple metabolites in a model to predict bread consumption, a stepwise logistic regression analysis was used. Receiver operating curves were constructed to evaluate the global performance of individual metabolites and their combination. The area under the curve values [AUC (95 % CI)] of combined models ranged from 77.8 % (69.1–86.4 %) to 93.7 % (89.4–98.1 %), whereas the AUC for the metabolites included in the models had weak values when they were evaluated individually: from 58.1 % (46.6–69.7 %) to 78.4 % (69.8–87.1 %). Our study showed that a daily bread intake significantly impacted on the urinary metabolome, despite being examined under uncontrolled free-living conditions. We further concluded that a combination of several biomarkers of exposure is better than a single biomarker for the predictive ability of discriminative analysis. | |
dc.publisher | 1573-3882 | |
dc.relation.ispartof | Metabolomics | |
dc.source | Metabolomics[ISSN 1573-3882],v. 11, p. 155-165 | |
dc.title | Nutrimetabolomics fingerprinting to identify biomarkers of bread exposure in a free-living population from the PREDIMED study cohort | |
dc.type | info:eu-repo/semantics/Article | es |
dc.type | Article | es |
dc.identifier.doi | 10.1007/s11306-014-0682-6 | |
dc.identifier.scopus | 84934438862 | - |
dc.contributor.authorscopusid | 36005441600 | |
dc.contributor.authorscopusid | 6603146365 | |
dc.contributor.authorscopusid | 8338704700 | |
dc.contributor.authorscopusid | 23669661700 | |
dc.contributor.authorscopusid | 7003357665 | |
dc.contributor.authorscopusid | 7004290629 | |
dc.contributor.authorscopusid | 7003570538 | |
dc.contributor.authorscopusid | 6602891390 | |
dc.contributor.authorscopusid | 57208853460 | |
dc.contributor.authorscopusid | 7005989830 | |
dc.contributor.authorscopusid | 35596972100 | |
dc.contributor.authorscopusid | 6603592094 | |
dc.description.lastpage | 165 | |
dc.description.firstpage | 155 | |
dc.relation.volume | 11 | |
dc.type2 | Artículo | es |
dc.date.coverdate | Enero 2014 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 1,272 | |
dc.description.jcr | 3,855 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IUIBS: Nutrición | - |
crisitem.author.dept | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.dept | Departamento de Ciencias Clínicas | - |
crisitem.author.orcid | 0000-0002-9658-9061 | - |
crisitem.author.parentorg | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.fullName | Serra Majem, Luis | - |
Colección: | Artículos |
Citas SCOPUSTM
36
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
33
actualizado el 17-nov-2024
Visitas
65
actualizado el 10-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.