Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44472
Título: High-intensity sprint training inhibits mitochondrial respiration through aconitase inactivation
Autores/as: Larsen, Filip J.
Schiffer, Tomas A.
Ørtenblad, Niels
Zinner, Christoph
Morales Álamo, David 
Willis, Sarah J.
López Calbet, José Antonio 
Holmberg, Hans Christer
Boushel, Robert
Clasificación UNESCO: 32 Ciencias médicas
Palabras clave: Exercise
Mitochondrial dysfunction
Reactive oxygen species
Citrate
Fecha de publicación: 2016
Editor/a: 0892-6638
Publicación seriada: FASEB Journal 
Resumen: Intense exercise training is a powerful stimulus that activates mitochondrial biogenesis pathways and thus increases mitochondrial density and oxidative capacity. Moderate levels of reactive oxygen species (ROS) during exercise are considered vital in the adaptive response, but high ROS production is a serious threat to cellular homeostasis. Although biochemical markers of the transition from adaptive to maladaptive ROS stress are lacking, it is likely mediated by redox sensitive enzymes involved in oxidative metabolism. One potential enzyme mediating such redox sensitivity is the citric acid cycle enzyme aconitase. In this study, we examined biopsy specimens of vastus lateralis and triceps brachii in healthy volunteers, together with primary human myotubes. An intense exercise regimen inactivated aconitase by 55-72%, resulting in inhibition of mitochondrial respiration by 50-65%. In the vastus, the mitochondrial dysfunction was compensated for by a 15-72% increase in mitochondrial proteins, whereas H2O2 emission was unchanged. In parallel with the inactivation of aconitase, the intermediary metabolite citrate accumulated and played an integral part in cellular protection against oxidative stress. In contrast, the triceps failed to increase mitochondrial density, and citrate did not accumulate. Instead, mitochondrial H2O2 emission was decreased to 40% of the pretraining levels, together with a 6-fold increase in protein abundance of catalase. In this study, a novel mitochondrial stress response was highlighted where accumulation of citrate acted to preserve the redox status of the cell during periods of intense exercise.
URI: http://hdl.handle.net/10553/44472
ISSN: 0892-6638
DOI: 10.1096/fj.15-276857
Fuente: Faseb Journal [ISSN 0892-6638], v. 30 (1), p. 417-427
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.