Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/44322
Title: Multi-objective genetic algorithms applied to low power pressure microsensor design
Authors: Monzón-Verona, José Miguel 
Garcia-Alonso Montoya, Santiago 
Sosa, Javier 
Montiel-Nelson, Juan A. 
UNESCO Clasification: 3306 Ingeniería y tecnología eléctricas
Keywords: Genetic algorithm
Optimization
Low power optimization
Microsensor
Multi-objective, et al
Issue Date: 2013
Publisher: 0264-4401
Journal: Engineering Computations 
Abstract: Purpose – The purpose of this paper is to explain in detail the optimization of the sensitivity versus the power consumption of a pressure microsensor using multi-objective genetic algorithms. Design/methodology/approach – The tradeoff between sensitivity and power consumption is analyzed and the Pareto frontier is identified by using NSGA-II, AMGA-II and ɛ-MOEA methods. Findings – Comparison results demonstrate that NSGA-II provides optimal solutions over the entire design space for spread metric analysis, and AMGA-II is better for convergence metric analysis. Originality/value – This paper provides a new multiobjective optimization tool for the designers of low power pressure microsensors.
URI: http://hdl.handle.net/10553/44322
ISSN: 0264-4401
DOI: 10.1108/EC-03-2012-0072
Source: Engineering Computations (Swansea, Wales)[ISSN 0264-4401],v. 30 (17099245), p. 1128-1146
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

2
checked on Dec 22, 2024

WEB OF SCIENCETM
Citations

2
checked on Dec 22, 2024

Page view(s)

74
checked on Mar 9, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.