Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44277
Título: | Optimized echo state network with intrinsic plasticity for EEG-based emotion recognition | Autores/as: | Fourati, Rahma Ammar, Boudour Aouiti, Chaouki Sanchez-Medina, Javier Alimi, Adel M. |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Echo state network Intrinsic plasticity Feature extraction Classification Electroencephalogram, et al. |
Fecha de publicación: | 2017 | Editor/a: | Springer | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 24th International Conference on Neural Information Processing, (ICONIP 2017) | Resumen: | Reservoir Computing (RC) is a paradigm for efficient training of Recurrent Neural Networks (RNNs). The Echo State Network (ESN), a type of RC paradigm, has been widely used for time series forecasting. Whereas, few works exist on classification with ESN. In this paper, we shed light on the use of ESN for pattern recognition problem, i.e. emotion recognition from Electroencephalogram (EEG). We show that the reservoir with its recurrence is able to perform the feature extraction step directly from the EEG raw. Such kind of recurrence rich of nonlinearities allows the projection of the input data into a high dimensional state space. It is well known that the ESN fails due to the poor choices of its initialization. Nevertheless, we show that pretraining the ESN with the Intrinsic Plasticity (IP) rule remedies the shortcoming of randomly initialization. To validate our approach, we tested our system on the benchmark DEAP containing EEG signals of 32 subjects and the results were promising. | URI: | http://hdl.handle.net/10553/44277 | ISBN: | 978-3-319-70095-3 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-319-70096-0_73 | Fuente: | Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science, v. 10635 LNCS, p. 718-727 |
Colección: | Capítulo de libro |
Visitas
180
actualizado el 31-oct-2024
Descargas
539
actualizado el 31-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.