Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44277
Título: Optimized echo state network with intrinsic plasticity for EEG-based emotion recognition
Autores/as: Fourati, Rahma
Ammar, Boudour
Aouiti, Chaouki
Sanchez-Medina, Javier 
Alimi, Adel M.
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Echo state network
Intrinsic plasticity
Feature extraction
Classification
Electroencephalogram, et al.
Fecha de publicación: 2017
Editor/a: Springer
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 24th International Conference on Neural Information Processing, (ICONIP 2017) 
Resumen: Reservoir Computing (RC) is a paradigm for efficient training of Recurrent Neural Networks (RNNs). The Echo State Network (ESN), a type of RC paradigm, has been widely used for time series forecasting. Whereas, few works exist on classification with ESN. In this paper, we shed light on the use of ESN for pattern recognition problem, i.e. emotion recognition from Electroencephalogram (EEG). We show that the reservoir with its recurrence is able to perform the feature extraction step directly from the EEG raw. Such kind of recurrence rich of nonlinearities allows the projection of the input data into a high dimensional state space. It is well known that the ESN fails due to the poor choices of its initialization. Nevertheless, we show that pretraining the ESN with the Intrinsic Plasticity (IP) rule remedies the shortcoming of randomly initialization. To validate our approach, we tested our system on the benchmark DEAP containing EEG signals of 32 subjects and the results were promising.
URI: http://hdl.handle.net/10553/44277
ISBN: 978-3-319-70095-3
ISSN: 0302-9743
DOI: 10.1007/978-3-319-70096-0_73
Fuente: Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science, v. 10635 LNCS, p. 718-727
Colección:Capítulo de libro
Vista completa

Visitas

180
actualizado el 31-oct-2024

Descargas

539
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.