Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44106
Título: Strategy for improving the reliability in the Facial identification
Autores/as: Travieso, Carlos M. 
Alonso, Jesús B. 
Ferrer, Miguel A. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Face detection , Image databases , Biometrics , Security , Robustness , Face recognition , Support vector machines , Support vector machine classification , Laboratories , Finite impulse response filter
Fecha de publicación: 2005
Editor/a: 1071-6572
Publicación seriada: Proceedings - International Carnahan Conference on Security Technology 
Conferencia: 39th Annual International Carnahan Conference on Security Technology 
39th Annual 2005 International Carnahan Conference on Security Technology, CCST'05 
Resumen: This paper presents a simple, robust and novel for errors detection in biometric system which is applied to the Olivetti Research Laboratory (ORL) face database (400 images). We have used as parameterisation different transformed dominions (Travieso et al., 2004; Faundez, 2003), and a support vector machine (SVM) (Burges, 1998; Cristianini and Shawe-Taylor, 2000) as classifier. This system has been adjusted with our experiments for obtaining a false identification rate (FIR) of 0%, with a success rate of 90.8% a rejected samples rate of 9.2%.
URI: http://hdl.handle.net/10553/44106
ISBN: 0-7803-9245-0
9780780392458
ISSN: 1071-6572
Fuente: Proceedings - International Carnahan Conference on Security Technology[ISSN 1071-6572] (1594833)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

2
actualizado el 24-nov-2024

Visitas

81
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.