Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44090
Título: | Advances in automatic detection of failures in electric machines using audio signals | Autores/as: | Alonso, Jesús B. Travieso, Carlos M. Ferrer, Miguel A. Henriquez, P. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Chaos, Lyapunov exponents, Correlation dimension, Correlation entropy and expert systems | Fecha de publicación: | 2007 | Publicación seriada: | Proceedings of the 11th IASTED International Conference on Artificial Intelligence and Soft Computing, ASC 2007 | Conferencia: | 11th IASTED International Conference on Artificial Intelligence and Soft Computing 11th IASTED International Conference on Artificial Intelligence and Soft Computing, ASC 2007 |
Resumen: | in this paper nonlinear chaotic features have been obtained from audio signals of different kinds of electric machines as a first step in order to develop a personal computer (PC) based artificial intelligence system for the fault identification and diagnosis of electric machines. These techniques can be applied in fault identification and diagnosis in industrial scenarios by mean of expert systems. Different nonlinear features (based on chaos theory) to detect changes of the audio signal were studied: maximal Lyapunov exponent, correlation dimension and correlation entropy. We also studied related measurement such as the time delay and the value of the first minimum of the mutual information function, the first zero of the autocorrelation function and Shannon entropy. We used different recordings from different scenarios (PC fans, an iron cutter and an electric drill). | URI: | http://hdl.handle.net/10553/44090 | ISBN: | 9780889866935 | Fuente: | Proceedings of the 11th IASTED International Conference on Artificial Intelligence and Soft Computing, ASC 2007, p. 114-119 |
Colección: | Actas de congresos |
Citas SCOPUSTM
1
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 25-feb-2024
Visitas
88
actualizado el 27-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.