Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44065
Título: Writer identification based on graphology techniques
Autores/as: Santana, Omar
Travieso, Carlos M. 
Alonso, Jesús B. 
Ferrer, Miguel A. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Image databases , Biometrics
Fecha de publicación: 2010
Editor/a: 0885-8985
Publicación seriada: IEEE Aerospace and Electronic Systems Magazine 
Resumen: Herein, an innovative system biometric of specific writers' identification based on technical expert calligraphic and graphology on handwritten script is presented. It has been developed working in the off-line mode on a Spanish words image database, formed by 29 different individuals. All extractions of characteristics carried out on the images have been used for the identification and were carried out by means of the estimate of several elements objects using studies from The French Graphology School. They are commonly employed by handwriting experts in judicial matters. The success percentage achieved with five of these characteristics from this database of 29 writers is 99.34%. In new experimentation, with these same parameters and enlarging the database to 70 users, a success rate of 92% was reached.
URI: http://hdl.handle.net/10553/44065
ISBN: 978-1-4244-1816-9
ISSN: 0885-8985
DOI: 10.1109/MAES.2010.5525319
Fuente: IEEE Aerospace and Electronic Systems Magazine [ISSN 0885-8985], v. 25 (6) (5525319), p. 35-42
Colección:Artículos
Vista completa

Citas SCOPUSTM   

9
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

5
actualizado el 17-nov-2024

Visitas

56
actualizado el 28-may-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.