Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44061
Título: Feature and computational time reduction on hand biometric system
Autores/as: Travieso, Carlos M. 
Solé-Casals, Jordi
Ferrer, Miguel A. 
Alonso, Jesús B. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Shape
Principal Component Analysis
Pattern Recognition
Hand Biometric System
Parameterization, et al.
Fecha de publicación: 2010
Conferencia: 3rd International Conference on Bio-Inspired Systems and Signal Processing (BIOSIGNALS 2010) 
Resumen: In real-time biometric systems, computational time is a critical and important parameter. In order to improve it, simpler systems are necessary but without loosing classification rates. In this present work, we explore how to improve the characteristics of a hand biometric system by reducing the computational time. For this task, neural network-multi layer Perceptron (NN-MLP) are used instead of original Hidden Markov Model (HMM) system and classical Principal Component Analysis (PCA) procedure is combined with MLP in order to obtain better results. As showed in the experiments, the new proposed PCA+MLP system achieves same success rate while computational time is reduced from 247 seconds (HMM case) to 7.3 seconds.
URI: http://hdl.handle.net/10553/44061
ISBN: 978-989-674-018-4
Fuente: BIOSIGNALS 2010 - Proceedings of the 3rd International Conference on Bio-inpsired Systems and Signal Processing, Proceedings, p. 367-372
Colección:Actas de congresos
Vista completa

Visitas

112
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.