Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44052
Título: | Off-line signature verification based on grey level information using texture features | Autores/as: | Vargas, J. F. Ferrer, M. A. Travieso, C. M. Alonso, J. B. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Off-line handwritten signature verification, Pattern recognition, Grey level information, Texture features, Co-occurrence matrix, Local binary pattern, LS-SVM | Fecha de publicación: | 2011 | Editor/a: | 0031-3203 | Publicación seriada: | Pattern Recognition | Resumen: | A method for conducting off-line handwritten signature verification is described. It works at the global image level and measures the grey level variations in the image using statistical texture features. The co-occurrence matrix and local binary pattern are analysed and used as features. This method begins with a proposed background removal. A histogram is also processed to reduce the influence of different writing ink pens used by signers. Genuine samples and random forgeries have been used to train an SVM model and random and skilled forgeries have been used for testing it. Results are reasonable according to the state-of-the-art and approaches that use the same two databases: MCYT-75 and GPDS-100 Corpuses. The combination of the proposed features and those proposed by other authors, based on geometric information, also promises improvements in performance. | URI: | http://hdl.handle.net/10553/44052 | ISSN: | 0031-3203 | DOI: | 10.1016/j.patcog.2010.07.028 | Fuente: | Pattern Recognition[ISSN 0031-3203],v. 44, p. 375-385 |
Colección: | Artículos |
Citas SCOPUSTM
185
actualizado el 10-nov-2024
Citas de WEB OF SCIENCETM
Citations
146
actualizado el 10-nov-2024
Visitas
51
actualizado el 18-jun-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.