Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44052
Título: Off-line signature verification based on grey level information using texture features
Autores/as: Vargas, J. F.
Ferrer, M. A. 
Travieso, C. M. 
Alonso, J. B. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Off-line handwritten signature verification, Pattern recognition, Grey level information, Texture features, Co-occurrence matrix, Local binary pattern, LS-SVM
Fecha de publicación: 2011
Editor/a: 0031-3203
Publicación seriada: Pattern Recognition 
Resumen: A method for conducting off-line handwritten signature verification is described. It works at the global image level and measures the grey level variations in the image using statistical texture features. The co-occurrence matrix and local binary pattern are analysed and used as features. This method begins with a proposed background removal. A histogram is also processed to reduce the influence of different writing ink pens used by signers. Genuine samples and random forgeries have been used to train an SVM model and random and skilled forgeries have been used for testing it. Results are reasonable according to the state-of-the-art and approaches that use the same two databases: MCYT-75 and GPDS-100 Corpuses. The combination of the proposed features and those proposed by other authors, based on geometric information, also promises improvements in performance.
URI: http://hdl.handle.net/10553/44052
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2010.07.028
Fuente: Pattern Recognition[ISSN 0031-3203],v. 44, p. 375-385
Colección:Artículos
Vista completa

Citas SCOPUSTM   

185
actualizado el 10-nov-2024

Citas de WEB OF SCIENCETM
Citations

146
actualizado el 10-nov-2024

Visitas

51
actualizado el 18-jun-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.