Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44042
Título: | Application of nonlinear dynamics characterization to emotional speech | Autores/as: | Henriquez, P. Alonso Hernández, Jesús Bernardino Ferrer Ballester, Miguel Ángel Travieso González, Carlos Manuel Orozco-Arroyave, Juan R. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Nonlinear dynamic, emotional speech, feature selection | Fecha de publicación: | 2011 | Editor/a: | 0302-9743 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 5th International Conference on Nonlinear Speech Processing (NOLISP 2011) 5th International Conference on Nonlinear Speech Processing, NOLISP 2011 |
Resumen: | This paper proposes the application of nonlinear measures based on nonlinear dynamics for emotional speech characterization. Measures such as mutual information, dimension correlation, entropy correlation, Shannon entropy, Lempel-Ziv complexity and Hurst exponent are extracted from the samples of a database of emotional speech. Then, statistics such as mean, standard deviation, skewness and kurtosis are applied on the extracted measures. Experiments were conducted on the Berlin emotional speech database for a threeclass problem (neutral, fear and anger emotional states). Feature selection is accomplished to select a reduced number of features. In order to evaluate the discrimination ability of the selected features a neural network classifier is used. A global success rate of 93.78% is obtained. | URI: | http://hdl.handle.net/10553/44042 | ISBN: | 9783642250194 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-642-25020-0_17 | Fuente: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 7015 LNAI, p. 127-136 |
Colección: | Actas de congresos |
Citas SCOPUSTM
9
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
7
actualizado el 25-feb-2024
Visitas
83
actualizado el 04-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.