Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44038
Título: Biometric identification based on hand-shape features using a HMM kernel
Autores/as: Briceño, Juan C.
Travieso, Carlos M. 
Alonso, Jesús B. 
Ferrer, Miguel A. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Hidden Markov models , Support vector machines , Kernel , Shape , Training , Encoding , Vectors
Fecha de publicación: 2011
Publicación seriada: 2011 International Conference on Hand-Based Biometrics, ICHB 2011 - Proceedings
Conferencia: 1st International Conference on Hand-basedBiometrics, ICHB 2011 
Resumen: The present work presents a biometric identification system for hand shape identification. The different contours have been coded based on angular descriptions forming a Markov chain descriptor. Hidden Markov Models (HMM), each representing a target identification class, have been trained with such chains. Features have been calculated from a kernel based on the HMM parameters descriptors. Finally, supervised Support Vector Machines were used to classify parameters from the HMM kernel. Firstly, the system was modelled using 60 users to tune up the HMM and HMM+SVM configuration parameters and finally, the system was checked with all database, 144 users with 10 samples per class. Our experiments have obtained similar results per both cases, showing a scalable, stable and robust system. Our experiments have achieved an upper success rate of 99.92%, using four hand samples per class for training mode, and six hand samples for test mode. This success was found using as features the transformation of 100 points hand shape with our HMM kernel, and as classifier Support Vector Machines with lineal separating functions.
URI: http://hdl.handle.net/10553/44038
ISBN: 9781457704901
DOI: 10.1109/ICHB.2011.6094315
Fuente: 2011 International Conference on Hand-Based Biometrics, ICHB 2011 - Proceedings (6094315), p. 159-164
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

7
actualizado el 17-nov-2024

Visitas

98
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.