Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44033
Título: Transformation of hand-shape features for a biometric identification approach
Autores/as: Travieso, Carlos M. 
Briceño, Juan Carlos
Alonso, Jesús B. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: hand-based biometrics; hand identification; DHMM kernel; supervised classification; image sensor; edge detection; biometrics
Fecha de publicación: 2012
Editor/a: 1424-8220
Publicación seriada: Sensors 
Resumen: The present work presents a biometric identification system for hand shape identification. The different contours have been coded based on angular descriptions forming a Markov chain descriptor. Discrete Hidden Markov Models (DHMM), each representing a target identification class, have been trained with such chains. Features have been calculated from a kernel based on the HMM parameter descriptors. Finally, supervised Support Vector Machines were used to classify parameters from the DHMM kernel. First, the system was modelled using 60 users to tune the DHMM and DHMM_kernel+SVM configuration parameters and finally, the system was checked with the whole database (GPDS database, 144 users with 10 samples per class). Our experiments have obtained similar results in both cases, demonstrating a scalable, stable and robust system. Our experiments have achieved an upper success rate of 99.87% for the GPDS database using three hand samples per class in training mode, and seven hand samples in test mode. Secondly, the authors have verified their algorithms using another independent and public database (the UST database). Our approach has reached 100% and 99.92% success for right and left hand, respectively; showing the robustness and independence of our algorithms. This success was found using as features the transformation of 100 points hand shape with our DHMM kernel, and as classifier Support Vector Machines with linear separating functions, with similar success.
URI: http://hdl.handle.net/10553/44033
ISSN: 1424-8220
DOI: 10.3390/s120100987
Fuente: Sensors[ISSN 1424-8220],v. 12, p. 987-1001
Colección:Artículos
miniatura
Adobe PDF (396,36 kB)
Vista completa

Citas SCOPUSTM   

5
actualizado el 08-dic-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 08-dic-2024

Visitas

78
actualizado el 27-jul-2024

Descargas

223
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.