Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44029
Título: Thermal face verification based on scale-invariant feature transform and vocabulary tree: Application to Biometric Verification Systems
Autores/as: Crespo, David
Travieso, Carlos M. 
Alonso, Jesús B. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: K-means, Image processing, SIFT parameters, Pattern recognition, Thermal face verification, Vocabulary tree, Face detection
Fecha de publicación: 2012
Publicación seriada: BIOSIGNALS 2012 - Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing
Conferencia: International Conference on Bio-inspired Systems and Signal Processing, BIOSIGNALS 2012 
Resumen: This paper presents a comprehensible performance analysis of a thermal face verification system based on the Scale-Invariant Feature Transform algorithm (SIFT) with a vocabulary tree, providing a verification scheme that scales efficiently to a large number of features. The image database is formed from front-view thermal images, which contain facial temperature distributions of different individuals in 2-dimensional format, containing 1,476 thermal images equally split into two sets of modalities: face and head. The SIFT features are not only invariant to image scale and rotation but also essential for providing a robust matching across changes in illumination or addition of noise. Descriptors extracted from local regions are hierarchically set in a vocabulary tree using the k-means algorithm as clustering method. That provides a larger and more discriminatory vocabulary, which leads to a performance improvement. The verification quality is evaluated through a series of independent experiments with various results, showing the power of the system, which satisfactorily verifies the identity of the database subjects and overcoming limitations such as dependency on illumination conditions and facial expressions. A comparison between head and face verification is made, obtaining success rates of 97.60% with thermal head images in relation to 88.20% in thermal face verification.
URI: http://hdl.handle.net/10553/44029
ISBN: 9789898425898
Fuente: BIOSIGNALS 2012 - Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, p. 475-481
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

2
actualizado el 17-nov-2024

Visitas

67
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.