Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44004
Título: | Automatic Apnea Identification by Transformation of the Cepstral Domain | Autores/as: | Travieso, Carlos M. Alonso, Jesús B. del Pozo-Baños, Marcos Ticay-Rivas, Jaime R. Lopez-de-Ipiña, Karmele |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Automatic apnea detection Artifacts removal Hidden Markov model Kernel building Machine learning Pattern recognition Nonlinear processing | Fecha de publicación: | 2013 | Editor/a: | 1866-9956 | Publicación seriada: | Cognitive Computation | Resumen: | A new approach based on the transformation of the Cepstral domain is developed on this work. This approach reaches an automatic diagnosis for the syndrome of obstructive sleep apnea that includes a specific block for the removal of electrocardiogram (ECG) artifacts and the R wave detection. The system is modeled by a transformation of the Cepstral domain sequence using hidden Markov model (HMM). The final decision is done with two different approaches: one based on HMM as a classifier and a second one based on support vector machines classification and a parameterization based on the transformation of HMM by a kernel. The later approach reached results up to 99.23 %, using all test samples from Physionet Apnea-ECG Database. | URI: | http://hdl.handle.net/10553/44004 | ISSN: | 1866-9956 | DOI: | 10.1007/s12559-012-9184-x | Fuente: | Cognitive Computation[ISSN 1866-9956],v. 5, p. 558-565 |
Colección: | Artículos |
Citas SCOPUSTM
7
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
3
actualizado el 17-nov-2024
Visitas
78
actualizado el 04-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.