Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43990
Campo DC Valoridioma
dc.contributor.authorAlonso, Jesús B.en_US
dc.contributor.authorCabrera, Josuéen_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.date.accessioned2018-11-21T19:24:05Z-
dc.date.available2018-11-21T19:24:05Z-
dc.date.issued2014en_US
dc.identifier.isbn9781479961740en_US
dc.identifier.urihttp://hdl.handle.net/10553/43990-
dc.description.abstract© 2014 IEEE.Automatic emotional state recognition from the speech signal represents a remarkable improvement in humanmachine interfaces and it opens up a wide range of new applications. This turns out to be no trivial task due to the degree of difficulty inherent in the study of emotions. Traditional methods of emotional discrimination use prosodic and paralinguistic features, which are determined by a linguistic segmentation of the locution. This type of segmentation results in almost real scenarios impossible to estimate. In this paper a simple and effective method of automatic discrimination between positive and negative emotional intensity speech is presented. This work proposes a new strategy based on a few features set obtained from a temporal segmentation of the speech signal. This strategy is robust, offers low computational cost and improves the performance of a segmentation based on linguistic aspects.
dc.languagespaen_US
dc.relation.ispartof2014 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2014 - Proceedingsen_US
dc.source2014 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2014 - Proceedings, p. 25-29en_US
dc.subject3307 Tecnología electrónicaen_US
dc.titleEmotional temperatureen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.relation.conference3rd IEEE International Work-Conference on Bioinspired Intelligence, IWOBI 2014
dc.identifier.scopus84923973023-
dc.contributor.authorscopusid24774957200-
dc.contributor.authorscopusid56501436400-
dc.contributor.authorscopusid6602376272-
dc.description.lastpage29-
dc.description.firstpage25-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.date.coverdateEnero 2014
dc.identifier.conferenceidevents121542
dc.identifier.ulpgces
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.event.eventsstartdate16-07-2014-
crisitem.event.eventsenddate18-07-2014-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Visitas

123
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.