Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43983
Título: Nonlinear dynamics characterization of emotional speech
Autores/as: Henríquez, P. 
Alonso Hernández, Jesús Bernardino 
Ferrer Ballester, Miguel Ángel 
Travieso González, Carlos Manuel 
Orozco-Arroyave, Juan R.
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Nonlinear dynamics, Complexity measures, Emotional speech
Fecha de publicación: 2014
Editor/a: 0925-2312
Publicación seriada: Neurocomputing 
Resumen: This paper proposes the application of complexity measures based on nonlinear dynamics for emotional speech characterization. Measures such as mutual information, dimension correlation, entropy correlation, Shannon entropy, Lempel–Ziv complexity and Hurst exponent are extracted from the samples of three databases of emotional speech. Then, statistics such as mean, standard deviation, skewness and kurtosis are applied on the extracted measures. Experiments were conducted on the Polish emotional speech database, on the Berlin emotional speech database and on the LCD emotional database for a three-class problem (neutral, fear and anger emotional states). A procedure for feature selection is proposed based on an affinity analysis of the features. This feature selection procedure is accomplished to select a reduced number of features over the Polish emotional database. Finally, the selected features are evaluated in the Berlin emotional speech database and in the LDC emotional database using a neural network classifier in order to assess the usefulness of the selected features. Global success rates of 72.28%, 75.4% and 80.75%, were obtained for the Polish emotional speech database, the Berlin emotional speech database and the LDC emotional speech database respectively.
URI: http://hdl.handle.net/10553/43983
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2012.05.037
Fuente: Neurocomputing[ISSN 0925-2312],v. 132, p. 126-135
Colección:Artículos
Vista completa

Citas SCOPUSTM   

25
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

18
actualizado el 17-nov-2024

Visitas

96
actualizado el 30-dic-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.