Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43973
Título: Palm Vein Recognition using Local Tetra Patterns
Autores/as: Manmohan
Saxena, Jai
Teckchandani, Kapish
Pandey, Prithu
Dutta, Malay Kishore
Travieso, Carlos M. 
Alonso-Hernandez, Jesus B. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Palm Vein
Local Tetra Patterns (Ltrp)
Contrast Limited Adaptive Histogram Equalization (Clahe)
Cosine Similarity Measure
Put Vein Database
Fecha de publicación: 2015
Editor/a: Institute of Electrical and Electronics Engineers (IEEE) 
Conferencia: 4th International Work Conference on Bioinspired Intelligence (IWOBI), 10-12 junio 2015, San Sebastián (España) 
Resumen: Palm Vein Recognition is an emerging touch-less and spoof-resistant means of biometric authentication. However, matching algorithms tend to lack accuracy, due to the complexity of vascular patterns and irregularities in subsequent samples of the same person. This paper proposes a method that describes the spatial structure of local texture using direction of central gray pixel, formulating a discrete set of features which generates a unique template that improves the accuracy of identification. The features from various samples pertaining to the same person are strategically combined. This creates a robust feature vector which is able to handle the irregularities encountered while acquiring images for the database, and improves the efficiency manifolds as compared to present techniques. Matching and score calculation was done using cosine similarity measure. The method was tested on the PUT Vein Database which contained 1200 samples. The results showed an Equal Error Rate of 0%
URI: http://hdl.handle.net/10553/43973
ISBN: 978-1-4799-6174-0
DOI: 10.1109/IWOBI.2015.7160159
Fuente: 4Th International Work Conference On Bioinspired Intelligence (IWOBI), p. 151-155
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

17
actualizado el 01-dic-2024

Citas de WEB OF SCIENCETM
Citations

12
actualizado el 25-feb-2024

Visitas

144
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.