Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43962
Título: Parameterization methodology for 2D shape classification by hidden Markov models
Autores/as: Ferrer, Miguel A. 
Alonso, Jesus B. 
David, Sebastien
Travieso, Carlos M. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Hidden Markov models , Synchronization , Abstracts , Pattern recognition , Shape , Tutorials , NIST
Fecha de publicación: 2015
Editor/a: 2219-5491
Publicación seriada: European Signal Processing Conference
Conferencia: 12th European Signal Processing Conference, EUSIPCO 2004 
Resumen: In computer vision, two-dimensional shape classification is a complex and well known topic, often basic for three-dimensional object recognition. Among different classification methods, this paper is focus on those that describe the 2D shape by means of a sequence of d-dimensional vectors which feeds a left to right hidden Markov model (HMM) recogniser. We propose a methodology for featuring the 2D shape with a sequence of vectors that take advantage of the HMM ability to spot the times when the infrequent vectors of the input sequence of vectors occur. This propierty is deduced by the repetition of the same HMM state during the moments in which the infrequent vectors is repeated. These HMM states are called by us synchronism states. The synchronization between the HMM and the input sequence of vectors can be improved thanks to adding an index component to the vectors. We show the recognition rate improvement of our proposal on selected applications
URI: http://hdl.handle.net/10553/43962
ISBN: 9783200001657
ISSN: 2219-5491
Fuente: European Signal Processing Conference[ISSN 2219-5491],v. 06-10-September-2004 (7079990), p. 761-764
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.