Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43961
Campo DC Valoridioma
dc.contributor.authorDelpozo-Banos, Marcosen_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.contributor.authorWeidemann, Christoph T.en_US
dc.contributor.authorAlonso, Jesús B.en_US
dc.date.accessioned2018-11-21T19:11:05Z-
dc.date.available2018-11-21T19:11:05Z-
dc.date.issued2015en_US
dc.identifier.issn1741-2560en_US
dc.identifier.otherWoS-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/43961-
dc.description.abstractObjective. Although interest in using electroencephalogram (EEG) activity for subject identification has grown in recent years, the state of the art still lacks a comprehensive exploration of the discriminant information within it. This work aims to fill this gap, and in particular, it focuses on the time-frequency representation of the EEG. Approach. We executed qualitative and quantitative analyses of six publicly available data sets following a sequential experimentation approach. This approach was divided in three blocks analysing the configuration of the power spectrum density, the representation of the data and the properties of the discriminant information. A total of ten experiments were applied. Main results. Results show that EEG information below 40 Hz is unique enough to discriminate across subjects (a maximum of 100 subjects were evaluated here), regardless of the recorded cognitive task or the sensor location. Moreover, the discriminative power of rhythms follows a W-like shape between 1 and 40 Hz, with the central peak located at the posterior rhythm (around 10 Hz). This information is maximized with segments of around 2 s, and it proved to be moderately constant across montages and time. Significance. Therefore, we characterize how EEG activity differs across individuals and detail the optimal conditions to detect subject-specific information. This work helps to clarify the results of previous studies and to solve some unanswered questions. Ultimately, it will serve as guide for the design of future biometric systems.en_US
dc.languageengen_US
dc.relation.ispartofJournal of Neural Engineeringen_US
dc.sourceJournal of Neural Engineering [ISSN 1741-2560], v. 12 (5), 056019, (Septiembre 2015)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherHuman Electroencephalogramen_US
dc.subject.otherPerson Identificationen_US
dc.subject.otherRecognitionen_US
dc.subject.otherBrainen_US
dc.subject.otherPotentialsen_US
dc.subject.otherModelen_US
dc.subject.otherBrain Computer Interface (Bci)en_US
dc.subject.otherElectroencephalogram (Eeg)en_US
dc.subject.otherBiometryen_US
dc.subject.otherSubject Identification/Verificationen_US
dc.titleEEG biometric identification: a thorough exploration of the time-frequency domainen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/1741-2560/12/5/056019en_US
dc.identifier.scopus2-s2.0-84944811071-
dc.identifier.scopus84944811071-
dc.identifier.isi000364139800021-
dc.contributor.authorscopusid35241841700-
dc.contributor.authorscopusid6602376272-
dc.contributor.authorscopusid23981437600-
dc.contributor.authorscopusid24774957200-
dc.identifier.eissn1741-2552-
dc.identifier.issue056019-
dc.relation.volume12en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid2996557-
dc.contributor.daisngid265761-
dc.contributor.daisngid2292610-
dc.contributor.daisngid29084685-
dc.description.numberofpages23en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:DelPozo-Banos, M-
dc.contributor.wosstandardWOS:Travieso, CM-
dc.contributor.wosstandardWOS:Weidemann, CT-
dc.contributor.wosstandardWOS:Alonso, JB-
dc.date.coverdateSeptiembre 2015en_US
dc.identifier.ulpgces
dc.description.sjr2,012
dc.description.jcr3,493
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

79
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

66
actualizado el 17-nov-2024

Visitas

85
actualizado el 05-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.