Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/43953
DC FieldValueLanguage
dc.contributor.authorAlmeida, Verónicaen_US
dc.contributor.authorDutta, Malay Kishoreen_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.contributor.authorSingh, Anushikhaen_US
dc.contributor.authorAlonso, Jesús B.en_US
dc.date.accessioned2018-11-21T19:07:29Z-
dc.date.available2018-11-21T19:07:29Z-
dc.date.issued2017en_US
dc.identifier.isbn9781509032105en_US
dc.identifier.urihttp://hdl.handle.net/10553/43953-
dc.description.abstractIn this paper, the proposed implementation of a soft-biometric system for automatic age detection from facial images is described. In order to do this, the method followed was that of a classical biometric system. The first step is preprocessing, to enhance the feature extraction. The next step is the parameterization, where techniques like wavelet transformed, discrete cosine transformed or local binary patterns were used. And finally, the last step is the classification system, implemented by Support Vector Machines.en_US
dc.languagespaen_US
dc.relation.ispartof2nd International Conference on Communication, Control and Intelligent Systems, CCIS 2016en_US
dc.source2nd International Conference on Communication, Control and Intelligent Systems, CCIS 2016 (7878211), p. 110-114en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherDatabases , Support vector machines , Face , Discrete cosine transforms , Kernel , Electronic mail , Discrete wavelet transforms, Biometrics , Age Detection , Facial Images , Image Processingen_US
dc.titleAutomatic age detection based on facial imagesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.identifier.doi10.1109/CCIntelS.2016.7878211en_US
dc.identifier.scopus85017237485-
dc.contributor.authorscopusid57193872150-
dc.contributor.authorscopusid35291803600-
dc.contributor.authorscopusid6602376272-
dc.contributor.authorscopusid55885045200-
dc.contributor.authorscopusid24774957200-
dc.description.lastpage114-
dc.identifier.issue7878211-
dc.description.firstpage110-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.ulpgces
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

4
checked on May 12, 2024

Page view(s)

65
checked on Dec 2, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.