Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43805
Campo DC Valoridioma
dc.contributor.authorVelázquez, Sergio
dc.contributor.authorCarta, José A.
dc.contributor.authorMatías, J. M.
dc.date.accessioned2018-11-21T17:58:17Z-
dc.date.available2018-11-21T17:58:17Z-
dc.date.issued2011
dc.identifier.issn0306-2619
dc.identifier.urihttp://hdl.handle.net/10553/43805-
dc.description.abstractIn the work presented in this paper Artificial Neural Networks (ANNs) were used to estimate the long-term wind speeds at a candidate site. The specific costs of the wind energy were subsequently determined on the basis of the knowledge of these wind speeds. The results were compared with those obtained with a linear Measure-Correlate-Predict (MCP) method. The mean hourly wind speeds and directions recorded over a 10 year period at six weather stations located on different islands in the Canary Archipelago (Spain) were used as a case study. The power-wind speed curves for five wind turbines of different rated power were also used. The mean absolute percentage error (MAPE), Pearson's correlation coefficient and the Index of Agreement (IoA) between measured and estimated data were used to evaluate the errors made with the different metrics analysed.Amongst the conclusions that can be drawn from the study it can be stated that, in all the cases analysed, the MAPE of the specific cost of the energy obtained using ANNs was lower than that obtained with the linear MCP method that was employed. In some cases reductions in the error of up to 26.5% were achieved with the ANNs with respect to the method used for purposes of comparison. However, when the correlation coefficients between the short-term data series of the candidate and reference sites were relatively low, the MAPEs generated by all the analysed metrics were higher when the estimation models were used than when the data for the short-term period at the candidate site was taken as being representative of the long-term wind performance at that site. (C) 2011 Elsevier Ltd. All rights reserved.
dc.publisher0306-2619
dc.relation.ispartofApplied Energy
dc.sourceApplied Energy[ISSN 0306-2619],v. 88, p. 3869-3881
dc.subject.otherArtificial Neural-Networks
dc.subject.otherSpeed
dc.subject.otherModel
dc.subject.otherDensity
dc.titleComparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: A case study in the Canary Islands
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.apenergy.2011.05.007
dc.identifier.scopus79959855553-
dc.identifier.isi000293195500033
dc.contributor.authorscopusid24336784400
dc.contributor.authorscopusid7003652043
dc.contributor.authorscopusid57211016243
dc.contributor.authorscopusid8058596200
dc.description.lastpage3881
dc.description.firstpage3869
dc.relation.volume88
dc.type2Artículoes
dc.contributor.daisngid8871675
dc.contributor.daisngid1198474
dc.contributor.daisngid30320309
dc.contributor.wosstandardWOS:Velazquez, S
dc.contributor.wosstandardWOS:Carta, JA
dc.contributor.wosstandardWOS:Matias, JM
dc.date.coverdateEnero 2011
dc.identifier.ulpgces
dc.description.sjr2,473
dc.description.jcr5,106
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0002-0392-6605-
crisitem.author.orcid0000-0003-1379-0075-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameVelázquez Medina, Sergio Leandro-
crisitem.author.fullNameCarta González, José Antonio-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

54
actualizado el 01-dic-2024

Citas de WEB OF SCIENCETM
Citations

44
actualizado el 24-nov-2024

Visitas

73
actualizado el 23-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.