Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43754
Campo DC Valoridioma
dc.contributor.authorSuárez Vega, Rafael Ricardoen_US
dc.contributor.authorGutiérrez Acuña, José Luisen_US
dc.contributor.authorRodríguez Díaz, Manuelen_US
dc.date.accessioned2018-11-21T17:35:28Z-
dc.date.available2018-11-21T17:35:28Z-
dc.date.issued2015en_US
dc.identifier.issn1365-8816en_US
dc.identifier.urihttp://hdl.handle.net/10553/43754-
dc.description.abstractThe Huff model is one of the most frequently used models in the field of retail distribution. Traditionally, parameters reflecting the effect of size and distance on determining the customers’ purchase probabilities in this model have been assumed constant along the study area. Applying some transformations on the Huff model formulation, these parameters can be calculated by means of ordinary least squares (OLS). In this paper, we used a local regression model, the geographically weighted regression model, instead of the usual global OLS model, with the aim of considering spatial nonstationarity in the model parameters. The estimated capture for a store was calculated by replacing global parameters with local ones. We present an application in which parameters showed spatial nonstationarity. The location of a new store was analysed too. We conclude that, for this case, the local model fits better than the global one. Moreover, the local model can provide individual information about customer preferences that global models ignore.en_US
dc.languageengen_US
dc.publisher1365-8816
dc.relation.ispartofInternational Journal of Geographical Information Scienceen_US
dc.sourceInternational Journal of Geographical Information Science[ISSN 1365-8816],v. 29, p. 217-233en_US
dc.subject5311 Organización y dirección de empresasen_US
dc.subject.otherEstudios de mercadoen_US
dc.titleLocating a supermarket using a locally calibrated Huff modelen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/13658816.2014.958154
dc.identifier.scopus84925633609-
dc.identifier.isi000351772900003
dc.contributor.authorscopusid56606361200-
dc.contributor.authorscopusid56394665800-
dc.contributor.authorscopusid23976518500-
dc.description.lastpage233-
dc.description.firstpage217-
dc.relation.volume29-
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.contributor.daisngid2274874
dc.contributor.daisngid26275892
dc.contributor.daisngid28993219
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Suarez-Vega, R
dc.contributor.wosstandardWOS:Gutierrez-Acuna, JL
dc.contributor.wosstandardWOS:Rodriguez-Diaz, M
dc.date.coverdateEnero 2015
dc.identifier.ulpgces
dc.description.sjr1,127
dc.description.jcr2,065
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.ssciSSCI
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.deptGIR Organización y dirección de empresas (Management)-
crisitem.author.deptDepartamento de Economía y Dirección de Empresas-
crisitem.author.orcid0000-0002-1926-3121-
crisitem.author.orcid0000-0003-2513-418X-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.parentorgDepartamento de Economía y Dirección de Empresas-
crisitem.author.fullNameSuárez Vega, Rafael Ricardo-
crisitem.author.fullNameRodríguez Díaz, Manuel-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

38
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

32
actualizado el 17-nov-2024

Visitas

122
actualizado el 10-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.