Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/43589
DC FieldValueLanguage
dc.contributor.authorTorti, Emanueleen_US
dc.contributor.authorFlorimbi, Giordanaen_US
dc.contributor.authorCastelli, Francescaen_US
dc.contributor.authorOrtega, Samuelen_US
dc.contributor.authorFabelo, Himaren_US
dc.contributor.authorCallicó, Gustavo Marreroen_US
dc.contributor.authorMarrero-Martin, Margaritaen_US
dc.contributor.authorLeporati, Francescoen_US
dc.date.accessioned2018-11-21T16:21:25Z-
dc.date.available2018-11-21T16:21:25Z-
dc.date.issued2018en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/43589-
dc.description.abstractThe precise delineation of brain cancer is a crucial task during surgery. There are several techniques employed during surgical procedures to guide neurosurgeons in the tumor resection. However, hyperspectral imaging (HSI) is a promising non-invasive and non-ionizing imaging technique that could improve and complement the currently used methods. The HypErspectraL Imaging Cancer Detection (HELICoiD) European project has addressed the development of a methodology for tumor tissue detection and delineation exploiting HSI techniques. In this approach, the K-means algorithm emerged in the delimitation of tumor borders, which is of crucial importance. The main drawback is the computational complexity of this algorithm. This paper describes the development of the K-means clustering algorithm on different parallel architectures, in order to provide real-time processing during surgical procedures. This algorithm will generate an unsupervised segmentation map that, combined with a supervised classification map, will offer guidance to the neurosurgeon during the tumor resection task. We present parallel K-means clustering based on OpenMP, CUDA and OpenCL paradigms. These algorithms have been validated through an in-vivo hyperspectral human brain image database. Experimental results show that the CUDA version can achieve a speed-up of ~<inline-formula> <math display="inline"> <semantics> <mrow> <mn>150</mn> <mo>×</mo> </mrow> </semantics> </math> </inline-formula> with respect to a sequential processing. The remarkable result obtained in this paper makes possible the development of a real-time classification system.en_US
dc.languageengen_US
dc.relation.ispartofElectronics (Switzerland)en_US
dc.sourceElectronics (Switzerland) [2079-9292],v. 7 (283)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherAlgorithmen_US
dc.subject.otherGraphics Processing Units (Gpus)en_US
dc.subject.otherCudaen_US
dc.subject.otherOpenmpen_US
dc.subject.otherOpenclen_US
dc.subject.otherK-Meansen_US
dc.subject.otherBrain Cancer Detectionen_US
dc.subject.otherHyperspectral Imagingen_US
dc.subject.otherUnsupervised Clusteringen_US
dc.titleParallel K-means clustering for brain cancer detection using hyperspectral imagesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/electronics7110283en_US
dc.identifier.scopus85056218448-
dc.identifier.isi000451527400016-
dc.contributor.authorscopusid56091390500-
dc.contributor.authorscopusid57118346500-
dc.contributor.authorscopusid57204577450-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid56006321500-
dc.contributor.authorscopusid23005327400-
dc.contributor.authorscopusid55937698500-
dc.identifier.eissn2079-9292-
dc.identifier.issue283-
dc.relation.volume7en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid3356516-
dc.contributor.daisngid9760694-
dc.contributor.daisngid16592-
dc.contributor.daisngid1812298-
dc.contributor.daisngid2096372-
dc.contributor.daisngid506422-
dc.contributor.daisngid4299279-
dc.contributor.daisngid797863-
dc.description.numberofpages19en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Torti, E-
dc.contributor.wosstandardWOS:Florimbi, G-
dc.contributor.wosstandardWOS:Castelli, F-
dc.contributor.wosstandardWOS:Ortega, S-
dc.contributor.wosstandardWOS:Fabelo, H-
dc.contributor.wosstandardWOS:Callico, GM-
dc.contributor.wosstandardWOS:Marrero-Martin, M-
dc.contributor.wosstandardWOS:Leporati, F-
dc.identifier.ulpgces
dc.description.sjr0,461
dc.description.jcr1,764
dc.description.sjrqQ1
dc.description.jcrqQ3
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IUMA: Equipos y Sistemas de Comunicación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.orcid0000-0002-0861-9954-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.author.fullNameMarrero Martín, Margarita Luisa-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (1,79 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.