Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/433
Título: Face recognition using independent component analysis and support vector machines
Autores/as: Déniz Suárez, Oscar
Castrillón-Santana, Modesto 
Hernández, M.
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Reconocimiento facial
Informática
Fecha de publicación: 2001
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 3rd International Conference on Audio- and Video- Based Biometric Person Authentication, AVBPA 2001 
Resumen: Support Vector Machines (SVM) and Independent Component Analysis (ICA) are two powerful and relatively recent techniques. SVMs are classifiers which have demonstrated high generalization capabilities in many different tasks, including the object recognition problem. ICA is a feature extraction technique which can be considered a generalization of Principal Component Analysis (PCA). ICA has been mainly used on the problem of blind signal separation. In this paper we combine these two techniques for the fare recognition problem. Experiments were made on two different face databases, achieving very high recognition rates. As the results using the combination PCA/SVM were not very far from those obtained with ICA/SVM, our experiments suggest that SVMs are relatively insensitive to the representation space. Thus as the training time for ICA is much larger than that of PCA, this result indicates that the best practical combination is PCA with SVM.
URI: http://hdl.handle.net/10553/433
ISBN: 3-540-42216-1
ISSN: 0302-9743
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 2091 LNCS, p. 59-64, (Diciembre 2001)
Colección:Actas de congresos
miniatura
Adobe PDF (260,8 kB)
Vista completa

Citas SCOPUSTM   

7
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 25-feb-2024

Visitas

99
actualizado el 03-feb-2024

Descargas

912
actualizado el 03-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.