Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/433
Título: | Face recognition using independent component analysis and support vector machines | Autores/as: | Déniz Suárez, Oscar Castrillón-Santana, Modesto Hernández, M. |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Reconocimiento facial Informática |
Fecha de publicación: | 2001 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 3rd International Conference on Audio- and Video- Based Biometric Person Authentication, AVBPA 2001 | Resumen: | Support Vector Machines (SVM) and Independent Component Analysis (ICA) are two powerful and relatively recent techniques. SVMs are classifiers which have demonstrated high generalization capabilities in many different tasks, including the object recognition problem. ICA is a feature extraction technique which can be considered a generalization of Principal Component Analysis (PCA). ICA has been mainly used on the problem of blind signal separation. In this paper we combine these two techniques for the fare recognition problem. Experiments were made on two different face databases, achieving very high recognition rates. As the results using the combination PCA/SVM were not very far from those obtained with ICA/SVM, our experiments suggest that SVMs are relatively insensitive to the representation space. Thus as the training time for ICA is much larger than that of PCA, this result indicates that the best practical combination is PCA with SVM. | URI: | http://hdl.handle.net/10553/433 | ISBN: | 3-540-42216-1 | ISSN: | 0302-9743 | Fuente: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 2091 LNCS, p. 59-64, (Diciembre 2001) |
Colección: | Actas de congresos |
Citas SCOPUSTM
7
actualizado el 01-dic-2024
Citas de WEB OF SCIENCETM
Citations
3
actualizado el 25-feb-2024
Visitas
99
actualizado el 03-feb-2024
Descargas
912
actualizado el 03-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.