Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/43079
Título: | Cepstrum coefficients of the RR series for the detection of obstructive sleep apnea based on different classifiers | Autores/as: | Ravelo-García, Antonio Navarro-Mesa, Juan L. Martín-González, Sofía Hernández-Pérez, Eduardo Quintana-Morales, Pedro Guerra-Moreno, Iván Navarro-Esteva, Javier Juliá-Serdá, Gabriel |
Clasificación UNESCO: | 3307 Tecnología electrónica | Fecha de publicación: | 2013 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 14th International Conference on Computer Aided Systems Theory (EUROCAST) 14th International Conference on Computer Aided Systems Theory, EUROCAST 2013 |
Resumen: | Two automatic statistical methods for the classification of the obstructive sleep apnoea syndrome based on the cepstrum coefficients of the RR series obtained from the Electrocardiogram (ECG) are presented. We study the effect of working with Linear Discriminant Analysis (LDA) and compare its performance with a reference detector based on Support Vector Machines (SVM). These classifications methods require two previous stages: preprocessing and feature extraction. Firstly, R instants are detected previous to the feature extraction phase thanks to a preprocessing over the ECG. Secondly, Cepstrum Coefficients over the RR signal is applied to extract the relevant characteristics specially those related to the system modelled by the filter-type elements concentrated in the low time lag region. | URI: | http://hdl.handle.net/10553/43079 | ISBN: | 9783642538612 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-642-53862-9-34 | Fuente: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 8112 LNCS, p. 266-271 |
Colección: | Actas de congresos |
Citas SCOPUSTM
5
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
3
actualizado el 25-feb-2024
Visitas
116
actualizado el 06-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.