Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42949
Título: | Univariate and multivariate versions of the negative binomial-inverse Gaussian distributions with applications | Autores/as: | Gómez Déniz, Emilio Sarabia, José María Calderín Ojeda, Enrique |
Clasificación UNESCO: | 1209 Estadística | Palabras clave: | Método de Gauss Distribución |
Fecha de publicación: | 2008 | Editor/a: | 0167-6687 | Publicación seriada: | Insurance: Mathematics and Economics | Conferencia: | 9th International Congress on Insurance - Mathematics and Economics | Resumen: | In this paper we propose a new compound negative binomial distribution by mixing the p negative binomial parameter with an inverse Gaussian distribution and where we consider the reparameterization p = exp (- λ). This new formulation provides a tractable model with attractive properties which make it suitable for application not only in the insurance setting but also in other fields where overdispersion is observed. Basic properties of the new distribution are studied. A recurrence for the probabilities of the new distribution and an integral equation for the probability density function of the compound version, when the claim severities are absolutely continuous, are derived. A multivariate version of the new distribution is proposed. For this multivariate version, we provide marginal distributions, the means vector, the covariance matrix and a simple formula for computing multivariate probabilities. Estimation methods are discussed. Finally, examples of application for both univariate and bivariate cases are given. | URI: | http://hdl.handle.net/10553/42949 | ISSN: | 0167-6687 | DOI: | 10.1016/j.insmatheco.2006.12.001 | Fuente: | Insurance: Mathematics and Economics[ISSN 0167-6687],v. 42, p. 39-49 |
Colección: | Artículos |
Visitas
122
actualizado el 05-oct-2024
Descargas
145
actualizado el 05-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.