Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42918
Campo DC Valoridioma
dc.contributor.authorPérez Sánchez, J. M.en_US
dc.contributor.authorGómez Déniz, Emilioen_US
dc.date.accessioned2018-11-21T11:41:18Z-
dc.date.available2018-11-21T11:41:18Z-
dc.date.issued2016en_US
dc.identifier.issn1753-9579en_US
dc.identifier.urihttp://hdl.handle.net/10553/42918-
dc.description.abstractGeneralized linear models (GLMs) that use a regression procedure to fit relationships between predictor and target variables are widely used in risk insurance data. It is crucial to detect the risk factors that significatively affect the number of claims, as this will eventually allow the insurer to fix premiums more precisely. We pay attention to power series distributions, instead of the exponential family, and develop a Bayesian methodology as an alternative to traditionally used maximum-likelihood-based methods. We use sampling-based methods in order to detect relevant risk factors in an automobile insurance data set. This new model allows us to incorporate the presence of an excessive number of zero counts and overdispersion phenomena (where the variance is larger than the mean). Then, we validate this model by comparing the results with other standard and Bayesian models. As part of the process of validation, information criteria such as the deviance information criterion (DIC), Akaike information criterion (AIC) and Bayesian information criterion (BIC) have been considered. For real data collected from 2004 to 2005 in an Australian insurance company, an example is provided using the Markov chain Monte Carlo method; this is developed using the WinBUGS package. The results show that the new Bayesian method outperforms the previous models.en_US
dc.languageengen_US
dc.publisher1753-9579
dc.relation.ispartofJournal of Risk Model Validationen_US
dc.sourceJournal of Risk Model Validation[ISSN 1753-9579],v. 10, p. 23-37en_US
dc.subject1207 Investigación operativaen_US
dc.subject.otherMétodos bayesianosen_US
dc.subject.otherAnálisis de datosen_US
dc.titleOn modeling zero-inflated insurance dataen_US
dc.typeinfo:eu-repo/semantics/articlees
dc.typeArticlees
dc.identifier.doi10.21314/JRMV.2016.160en_US
dc.identifier.scopus85006804699-
dc.contributor.authorscopusid14029014700
dc.contributor.authorscopusid15724912000
dc.description.lastpage37-
dc.description.firstpage23-
dc.relation.volume10-
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.identifier.ulpgces
dc.description.sjr0,303
dc.description.jcr0,188
dc.description.sjrqQ4
dc.description.jcrqQ4
dc.description.ssciSSCI
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Análisis Económico Aplicado-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0002-7491-4345-
crisitem.author.orcid0000-0002-5072-7908-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNamePérez Sánchez, José María-
crisitem.author.fullNameGómez Déniz, Emilio-
Colección:Artículos
Vista resumida

Visitas

77
actualizado el 12-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.