Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42893
Título: | Robust Bayesian premium principles in actuarial science | Autores/as: | Gómez Déniz, Emilio Vázquez Polo, Francisco José Bastida, A. H. |
Clasificación UNESCO: | 1208 Probabilidad | Palabras clave: | Probabilidad Métodos bayesianos |
Fecha de publicación: | 2000 | Editor/a: | 0039-0526 | Publicación seriada: | Journal of the Royal Statistical Society Series D: The Statistician | Resumen: | The term premium relates to the purchase price of an insurance contract. Bayesian models in credibility theory require a complete specification of the model (basically, the prior) and it is difficult to justify any one particular choice. According to robust Bayesian methodology, uncertainty in the prior can be modelled by specifying a class Γ of priors instead of a single prior. We examine the ranges of Bayesian premiums when the priors belong to such a class. Most robust Bayesian procedures include measures of sensitivity of quantities which can be expressed in terms of a posterior expectation (e.g. the mean, variance and probability of sets). Nevertheless, a significant difference that appears in the actuarial context is considered here. The expression for some Bayes premiums in credibility theory suggests that the quantity of interest can be expressed in terms of the ratio of posterior expectations. Appropriate techniques to do this are considered here. Two models and two situations are presented for a non-compound collective model. Even though the model is very robust, a consideration of unimodality significantly reduces the sensitivity of the Bayesian premium arising from a base prior π0. Therefore, unimodality is very convenient for modelling subjective beliefs about the risk parameter. | URI: | http://hdl.handle.net/10553/42893 | ISSN: | 1467-9884 | DOI: | 10.1111/1467-9884.00234 | Fuente: | Journal of the Royal Statistical Society Series D: The Statistician[ISSN 0039-0526],v. 49, p. 241-252 |
Colección: | Artículos |
Citas SCOPUSTM
19
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
9
actualizado el 17-nov-2024
Visitas
26
actualizado el 30-dic-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.