Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42880
DC FieldValueLanguage
dc.contributor.authorSanchez Nielsen, Elenaen_US
dc.contributor.authorLorenzo Navarro, J.en_US
dc.contributor.authorHernandez Tejera, M.en_US
dc.date.accessioned2018-11-21T11:30:53Z-
dc.date.available2018-11-21T11:30:53Z-
dc.date.issued2001en_US
dc.identifier.isbn0-7695-1183-Xen_US
dc.identifier.isbn978-0-7695-1183-2-
dc.identifier.urihttp://hdl.handle.net/10553/42880-
dc.description.abstractTracking moving objects based on a Hausdorff approach can be formulated in terms of a matching process between two sets of edge points extracted from the object model to be localized and the corresponding frame of the image sequence. However, no information about the global measures of the object feature positions has been considered to carry out the matching process through a search strategy. This situation leads to an increase of computational cost in the tracking process, due to no limitations ("pruning") in the search region in the problem space. Experimental results with real-world complex image sequences including changing background conditions are provided to illustrate the performance and advantages with respect to previous approaches. The results are analyzed.en_US
dc.languageengen_US
dc.sourceProceedings - 11th International Conference on Image Analysis and Processing, ICIAP 2001 (956997), p. 131-136en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherRoboticsen_US
dc.subject.otherRobotsen_US
dc.subject.otherRobóticaen_US
dc.subject.otherImage analysisen_US
dc.subject.otherAnálisis de imágenesen_US
dc.titleIncreasing efficiency of Hausdorff approach for tracking real scenes with complex environmentsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.identifier.doi10.1109/ICIAP.2001.956997en_US
dc.identifier.scopus33748107959-
dc.contributor.authorscopusid13105159100-
dc.contributor.authorscopusid15042453800-
dc.contributor.authorscopusid6508077539-
dc.description.lastpage136-
dc.identifier.issue956997-
dc.description.firstpage131-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.orcid0000-0001-9717-8048-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.fullNameHernández Tejera, Francisco Mario-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 17, 2024

Page view(s)

125
checked on Oct 19, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.