Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42864
Título: Soft computing techniques for human-computer interaction
Autores/as: Déniz, Oscar
Bueno, Gloria
Castrillón, Modesto 
Lorenzo, Javier 
Antón, L.
Hernández, M. 
Clasificación UNESCO: 120304 Inteligencia artificial
Fecha de publicación: 2010
Editor/a: Information Science Reference
Resumen: Soft computing aims at using tricks or shortcuts that do not provide optimal solutions but useful approximations that can be computed at a reasonable cost. Such approximations often come in the form of heuristics and "rules of thumb." Computer vision relies heavily on heuristics, being a simple example the detection of faces by detecting skin color. Another approach that may also be considered as heuristics is the use of inductive learning, where the idea is to emulate humans in the sense that achieving certain skills require gradual learning. Thus, we would not make an effort to articulate solutions as equations, rules or algorithms. The solution would instead be sought automatically by feeding the system with training examples that would allow it to classify new samples. This chapter describes two successful applications of such soft computing approaches in the field of human-computer interaction, showing how the clever use of heuristics and domain restrictions can help to find solutions for the most difficult problems in this field.
URI: http://hdl.handle.net/10553/42864
ISBN: 978-1-61520-893-7
DOI: 10.4018/978-1-61520-893-7.ch003
Fuente: Soft Computing Methods for Practical Environment Solutions: Techniques and Studies / edited by Marcos Gestal Pose, Daniel Rivero Cebrián, p. 30-44, (Diciembre 2010)
Colección:Capítulo de libro
Vista completa

Visitas

149
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.