Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42521
Título: On numerical regularity of trisection-based algorithms in 3D
Autores/as: Korotov S.
Plaza, Ángel 
Suárez, José P. 
Abad, Pilar 
Clasificación UNESCO: 120601 Construcción de algoritmos
Palabras clave: Local Refinement
Fecha de publicación: 2016
Publicación seriada: Springer Proceedings in Mathematics and Statistics 
Conferencia: International Conference on Differential and Difference Equations and Applications (ICDDEA) 
International Conference on Differential and Difference Equations with Applications, ICDDEA 2015 
Resumen: The longest-edge (LE-) trisection of the given tetrahedron is obtained by joining two equally spaced points on its longest edge with the opposite vertices, and, thus, splitting the tetrahedron into three sub-tetrahedra. On the base such LE-trisections we introduce and numerically test the refinement algorithms for tetrahedral meshes. Computations conducted show that the quality of meshes generated by these algorithms does not seem to degenerate.
URI: http://hdl.handle.net/10553/42521
ISBN: 978-3-319-32855-3
978-3-319-32857-7
ISSN: 2194-1009
DOI: 10.1007/978-3-319-32857-7_35
Fuente: Pinelas S., Došlá Z., Došlý O., Kloeden P. (eds) Differential and Difference Equations with Applications. ICDDEA 2015. Springer Proceedings in Mathematics & Statistics, vol 164, p. 371-384. Springer, Cham
URL: https://api.elsevier.com/content/abstract/scopus_id/84988694035
Colección:Actas de congresos
Vista completa

Visitas

128
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.