Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42521
Título: | On numerical regularity of trisection-based algorithms in 3D | Autores/as: | Korotov S. Plaza, Ángel Suárez, José P. Abad, Pilar |
Clasificación UNESCO: | 120601 Construcción de algoritmos | Palabras clave: | Local Refinement | Fecha de publicación: | 2016 | Publicación seriada: | Springer Proceedings in Mathematics and Statistics | Conferencia: | International Conference on Differential and Difference Equations and Applications (ICDDEA) International Conference on Differential and Difference Equations with Applications, ICDDEA 2015 |
Resumen: | The longest-edge (LE-) trisection of the given tetrahedron is obtained by joining two equally spaced points on its longest edge with the opposite vertices, and, thus, splitting the tetrahedron into three sub-tetrahedra. On the base such LE-trisections we introduce and numerically test the refinement algorithms for tetrahedral meshes. Computations conducted show that the quality of meshes generated by these algorithms does not seem to degenerate. | URI: | http://hdl.handle.net/10553/42521 | ISBN: | 978-3-319-32855-3 978-3-319-32857-7 |
ISSN: | 2194-1009 | DOI: | 10.1007/978-3-319-32857-7_35 | Fuente: | Pinelas S., Došlá Z., Došlý O., Kloeden P. (eds) Differential and Difference Equations with Applications. ICDDEA 2015. Springer Proceedings in Mathematics & Statistics, vol 164, p. 371-384. Springer, Cham | URL: | https://api.elsevier.com/content/abstract/scopus_id/84988694035 |
Colección: | Actas de congresos |
Visitas
128
actualizado el 24-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.