Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/42521
Title: On numerical regularity of trisection-based algorithms in 3D
Authors: Korotov S.
Plaza, Ángel 
Suárez, José P. 
Abad, Pilar 
UNESCO Clasification: 120601 Construcción de algoritmos
Keywords: Local Refinement
Issue Date: 2016
Journal: Springer Proceedings in Mathematics and Statistics 
Conference: International Conference on Differential and Difference Equations and Applications (ICDDEA) 
International Conference on Differential and Difference Equations with Applications, ICDDEA 2015 
Abstract: The longest-edge (LE-) trisection of the given tetrahedron is obtained by joining two equally spaced points on its longest edge with the opposite vertices, and, thus, splitting the tetrahedron into three sub-tetrahedra. On the base such LE-trisections we introduce and numerically test the refinement algorithms for tetrahedral meshes. Computations conducted show that the quality of meshes generated by these algorithms does not seem to degenerate.
URI: https://accedacris.ulpgc.es/handle/10553/42521
ISBN: 978-3-319-32855-3
978-3-319-32857-7
ISSN: 2194-1009
DOI: 10.1007/978-3-319-32857-7_35
Source: Pinelas S., Došlá Z., Došlý O., Kloeden P. (eds) Differential and Difference Equations with Applications. ICDDEA 2015. Springer Proceedings in Mathematics & Statistics, vol 164, p. 371-384. Springer, Cham
URL: https://api.elsevier.com/content/abstract/scopus_id/84988694035
Appears in Collections:Actas de congresos
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.