Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42476
DC FieldValueLanguage
dc.contributor.authorOrtega, Z.en_US
dc.contributor.authorAlemán, M. E.en_US
dc.contributor.authorBenítez, A. N.en_US
dc.contributor.authorMonzón, M. D.en_US
dc.contributor.otherOrtega, Zaida-
dc.contributor.otherMonzon, Mario D.-
dc.contributor.otherAleman Dominguez, Maria Elena-
dc.date.accessioned2018-11-15T19:34:21Z-
dc.date.available2018-11-15T19:34:21Z-
dc.date.issued2016en_US
dc.identifier.issn0263-2241en_US
dc.identifier.urihttp://hdl.handle.net/10553/42476-
dc.description.abstractAlthough microFDM (microFused Deposition Modeling) has been widely used with biomaterials, there is not enough information about their flow models and the appropriate values for operating conditions. The aim of this paper is to provide a criterion to establish feasible ranges of temperature and shear stress to carry out fused deposition of the biomaterials studied at microscale (hundreds of μm). Materials used were (acrylonitrile-butadiene-styrene), PLA (polylactic acid), and PCL (polycaprolactone). Polyvinyl alcohol was also included in this study, although its quick thermal degradation has led to poor dimensional stability parameters and, therefore, it has been considered inappropriate for this application. Viscosity models were obtained in a 300 μm nozzle microFDM device manufactured by electroforming techniques. These models were used in a simulation analysis whose results show a relationship between the convergence of the algorithm and the characteristics of the filament obtained in equivalent experimental testing. Besides, melt fracture and relevance of swelling was assessed by optical microscopy observation. This information allows to define operating conditions (in terms of temperature and shear rate) to obtain homogeneous morphological characteristics of the microextrudate. Furthermore, the procedure stated could be used in tissue engineering to delimit feasible operating conditions to manufacture scaffolds by fused deposition modeling.en_US
dc.languageengen_US
dc.relation.ispartofMeasurementen_US
dc.sourceMeasurement [ISSN 0263-2241] ,v. 89, p. 137-144en_US
dc.subject3312 Tecnología de materialesen_US
dc.subject3328 Procesos tecnológicosen_US
dc.subject331003 Procesos industrialesen_US
dc.subject.otherAdditive manufacturingen_US
dc.subject.otherBiomaterialsen_US
dc.subject.otherFused Deposition Modelingen_US
dc.subject.otherMicromanufacturingen_US
dc.subject.otherRheologyen_US
dc.titleTheoretical-experimental evaluation of different biomaterials for parts obtaining by fused deposition modelingen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.measurement.2016.03.061en_US
dc.identifier.scopus84962920635-
dc.identifier.isi000376463700017-
dcterms.isPartOfMeasurement
dcterms.sourceMeasurement[ISSN 0263-2241],v. 89, p. 137-144
dc.contributor.authorscopusid36241994700-
dc.contributor.authorscopusid56097219900-
dc.contributor.authorscopusid57210096811-
dc.contributor.authorscopusid13805747600-
dc.contributor.authorscopusid7003371153-
dc.description.lastpage144en_US
dc.description.firstpage137en_US
dc.relation.volume89en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000376463700017-
dc.contributor.daisngid2273115-
dc.contributor.daisngid8698575-
dc.contributor.daisngid8185592-
dc.contributor.daisngid32437030-
dc.contributor.daisngid579452-
dc.contributor.daisngid1363424-
dc.identifier.investigatorRIDH-3145-2015-
dc.identifier.investigatorRIDNo ID-
dc.identifier.investigatorRIDNo ID-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Ortega, Z-
dc.contributor.wosstandardWOS:Aleman, ME-
dc.contributor.wosstandardWOS:Benitez, AN-
dc.contributor.wosstandardWOS:Monzon, MD-
dc.date.coverdateJulio 2016en_US
dc.identifier.ulpgcen_US
dc.description.sjr0,734
dc.description.jcr2,359
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0002-7112-1067-
crisitem.author.orcid0000-0002-2254-9905-
crisitem.author.orcid0000-0001-5711-6395-
crisitem.author.orcid0000-0003-2736-7905-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameOrtega Medina, Zaida Cristina-
crisitem.author.fullNameAleman Dominguez,Maria Elena-
crisitem.author.fullNameBenítez Vega, Antonio Nizardo-
crisitem.author.fullNameMonzón Verona, Mario Domingo-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

16
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

16
checked on Mar 30, 2025

Page view(s)

65
checked on Nov 1, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.