Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42476
Campo DC Valoridioma
dc.contributor.authorOrtega, Z.en_US
dc.contributor.authorAlemán, M. E.en_US
dc.contributor.authorBenítez, A. N.en_US
dc.contributor.authorMonzón, M. D.en_US
dc.contributor.otherOrtega, Zaida
dc.contributor.otherMonzon, Mario D.
dc.contributor.otherAleman Dominguez, Maria Elena
dc.date.accessioned2018-11-15T19:34:21Z-
dc.date.available2018-11-15T19:34:21Z-
dc.date.issued2016en_US
dc.identifier.issn0263-2241en_US
dc.identifier.urihttp://hdl.handle.net/10553/42476-
dc.description.abstractAlthough microFDM (microFused Deposition Modeling) has been widely used with biomaterials, there is not enough information about their flow models and the appropriate values for operating conditions. The aim of this paper is to provide a criterion to establish feasible ranges of temperature and shear stress to carry out fused deposition of the biomaterials studied at microscale (hundreds of μm). Materials used were (acrylonitrile-butadiene-styrene), PLA (polylactic acid), and PCL (polycaprolactone). Polyvinyl alcohol was also included in this study, although its quick thermal degradation has led to poor dimensional stability parameters and, therefore, it has been considered inappropriate for this application. Viscosity models were obtained in a 300 μm nozzle microFDM device manufactured by electroforming techniques. These models were used in a simulation analysis whose results show a relationship between the convergence of the algorithm and the characteristics of the filament obtained in equivalent experimental testing. Besides, melt fracture and relevance of swelling was assessed by optical microscopy observation. This information allows to define operating conditions (in terms of temperature and shear rate) to obtain homogeneous morphological characteristics of the microextrudate. Furthermore, the procedure stated could be used in tissue engineering to delimit feasible operating conditions to manufacture scaffolds by fused deposition modeling.en_US
dc.languageengen_US
dc.relation.ispartofMeasurement: Journal of the International Measurement Confederationen_US
dc.sourceMeasurement: Journal of the International Measurement Confederation[ISSN 0263-2241],v. 89, p. 137-144en_US
dc.subject3312 Tecnología de materialesen_US
dc.subject3328 Procesos tecnológicosen_US
dc.subject331003 Procesos industrialesen_US
dc.subject.otherAdditive manufacturingen_US
dc.subject.otherBiomaterialsen_US
dc.subject.otherFused Deposition Modelingen_US
dc.subject.otherMicromanufacturingen_US
dc.subject.otherRheologyen_US
dc.titleTheoretical-experimental evaluation of different biomaterials for parts obtaining by fused deposition modelingen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.measurement.2016.03.061
dc.identifier.scopus84962920635-
dc.identifier.isi000376463700017
dcterms.isPartOfMeasurement
dcterms.sourceMeasurement[ISSN 0263-2241],v. 89, p. 137-144
dc.contributor.authorscopusid36241994700
dc.contributor.authorscopusid56097219900
dc.contributor.authorscopusid57210096811
dc.contributor.authorscopusid13805747600
dc.contributor.authorscopusid7003371153
dc.description.lastpage144-
dc.description.firstpage137-
dc.relation.volume89-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000376463700017
dc.contributor.daisngid2273115
dc.contributor.daisngid8698575
dc.contributor.daisngid8185592
dc.contributor.daisngid32437030
dc.contributor.daisngid579452
dc.contributor.daisngid1363424
dc.identifier.investigatorRIDH-3145-2015
dc.identifier.investigatorRIDNo ID
dc.identifier.investigatorRIDNo ID
dc.contributor.wosstandardWOS:Ortega, Z
dc.contributor.wosstandardWOS:Aleman, ME
dc.contributor.wosstandardWOS:Benitez, AN
dc.contributor.wosstandardWOS:Monzon, MD
dc.date.coverdateJulio 2016
dc.identifier.ulpgces
dc.description.sjr0,734
dc.description.jcr2,359
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0002-7112-1067-
crisitem.author.orcid0000-0002-2254-9905-
crisitem.author.orcid0000-0001-5711-6395-
crisitem.author.orcid0000-0003-2736-7905-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameOrtega Medina, Zaida Cristina-
crisitem.author.fullNameAleman Dominguez,Maria Elena-
crisitem.author.fullNameBenítez Vega, Antonio Nizardo-
crisitem.author.fullNameMonzón Verona, Mario Domingo-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

15
actualizado el 21-abr-2024

Citas de WEB OF SCIENCETM
Citations

14
actualizado el 25-feb-2024

Visitas

37
actualizado el 27-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.