Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42445
DC FieldValueLanguage
dc.contributor.authorGómez-Déniz, Emilioen_US
dc.contributor.authorGhitany, M. E.en_US
dc.contributor.authorGupta, Ramesh C.en_US
dc.date.accessioned2018-11-14T09:43:51Z-
dc.date.available2018-11-14T09:43:51Z-
dc.date.issued2016en_US
dc.identifier.issn0361-0918en_US
dc.identifier.urihttp://hdl.handle.net/10553/42445-
dc.description.abstractIn this article, we have developed a Poisson-mixed inverse Gaussian (PMIG) distribution. The mixed inverse Gaussian distribution is a mixture of the inverse Gaussian distribution and its length-biased counterpart. A PMIG regression model is developed and the maximum likelihood estimation of the parameters is studied. A dataset dealing with the number of hospital stays among the elderly population is analyzed by using the PMIG and the PIG (Poisson-inverse Gaussian) regression models and it has been shown that the PMIG model fits the data better than the PIG model.en_US
dc.languageengen_US
dc.relation.ispartofCommunications in Statistics Part B: Simulation and Computationen_US
dc.sourceCommunications in Statistics: Simulation and Computation[ISSN 0361-0918],v. 45, p. 2767-2781en_US
dc.subject12 Matemáticasen_US
dc.subject.otherAkaike information criterionen_US
dc.subject.otherMaximum likelihooden_US
dc.subject.otherMixture inverse Gaussian distributionen_US
dc.subject.otherOver-dispersionen_US
dc.subject.otherRegression analysis estimationen_US
dc.titlePoisson-mixed inverse Gaussian regression model and its applicationen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1080/03610918.2014.925924
dc.identifier.scopus84976557477-
dc.identifier.isi000379593400009
dc.contributor.authorscopusid15724912000
dc.contributor.authorscopusid6602733980
dc.contributor.authorscopusid55705318800
dc.description.lastpage2781-
dc.identifier.issue8-
dc.description.firstpage2767-
dc.relation.volume45-
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.contributor.daisngid610603
dc.contributor.daisngid977733
dc.contributor.daisngid218753
dc.contributor.wosstandardWOS:Gomez-Deniz, E
dc.contributor.wosstandardWOS:Ghitany, ME
dc.contributor.wosstandardWOS:Gupta, RC
dc.date.coverdateSeptiembre 2016
dc.identifier.ulpgces
dc.description.sjr0,578
dc.description.jcr0,457
dc.description.sjrqQ3
dc.description.jcrqQ4
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0002-5072-7908-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameGómez Déniz, Emilio-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

3
checked on Jan 29, 2023

WEB OF SCIENCETM
Citations

2
checked on Jan 29, 2023

Page view(s)

22
checked on Oct 15, 2022

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.