Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42441
Título: | Using bioacoustic signals and Support Vector Machine for automatic classification of insects | Autores/as: | Noda, Juan J. Travieso, Carlos M. Sanchez-Rodriguez, David Dutta, Malay Kishore Singh, Anushikha |
Clasificación UNESCO: | 33 Ciencias tecnológicas 240601 Bioacústica |
Palabras clave: | Bioacoustic classification Insect sound recognition LFCC MFCC SVM |
Fecha de publicación: | 2016 | Editor/a: | Institute of Electrical and Electronics Engineers (IEEE) | Conferencia: | 3rd International Conference on Signal Processing and Integrated Networks (SPIN) | Resumen: | This work presents a new approach for automatic recognition of insects through intelligent systems. Insect species employ a set of sound signals for communication purposes which are specie-specific. Based on this fact, an acoustic signal recognition method has been designed to allow an efficient taxonomic classification of this animal group. In this paper, the sound signals have been characterized by Mel and Linear Frequency Cepstral Coefficients (MFCCs and LFCCs) to compare their efficacy. Then, a Support Vector Machine algorithm has been used for classification achieving an average success rate of 99.08% over 88 insect species. | URI: | http://hdl.handle.net/10553/42441 | ISBN: | 9781467391979 | DOI: | 10.1109/SPIN.2016.7566778 | Fuente: | 3rd International Conference on Signal Processing and Integrated Networks, SPIN 2016, p. 656-659, (Septiembre 2016) |
Colección: | Actas de congresos |
Citas SCOPUSTM
27
actualizado el 24-nov-2024
Citas de WEB OF SCIENCETM
Citations
12
actualizado el 25-feb-2024
Visitas
71
actualizado el 15-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.