Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42400
Title: On the powers of the k-Fibonacci numbers
Authors: Falcon, Sergio 
UNESCO Clasification: Investigación
12 Matemáticas
1202 Análisis y análisis funcional
Keywords: K-fibonacci numbers
K-Lucas numbers
Recurrence laws
Issue Date: 2016
Journal: Ars Combinatoria 
Abstract: In this paper we will find a combinatorial formula that relates the power of a k-Fibonacci number, Fp k, n, to the number Fk,an. From this formula and if p is odd, we will find a new formula that allows to express the k-Fibonacci number Fk,(nr+i)n as a combination of odd powers of Fk,n. If P is even, the formula is similar but for the even k-Lucas numbers Lk,2m.
URI: http://hdl.handle.net/10553/42400
ISSN: 0381-7032
Source: Ars Combinatoria[ISSN 0381-7032],v. 127, p. 329-338
Appears in Collections:Artículos
Show full item record

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.