Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42223
Título: Improving constrained glider trajectories for ocean eddy border sampling within extended mission planning time
Autores/as: Zamuda, Ales
Hernández Sosa, José Daniel 
Adler, Leonhard
Clasificación UNESCO: 120304 Inteligencia artificial
120326 Simulación
331913 Vehículos submarinos
Palabras clave: Differential evolution algorithm
Particle swarm optimizer
Global optimization
Control parameters
Self-adaptation, et al.
Fecha de publicación: 2016
Conferencia: 2016 IEEE Congress on Evolutionary Computation, CEC 2016 
Resumen: This paper extends the performance assessment of an underwater glider path planning approach recently proposed for constrained sub-mesoscale eddy border sampling conditions, for situations benefiting from extended mission planning time. The aim of addressing such situations is to improve the glider vehicle capabilities through improving its off-board controller, which computes an improved trajectory for the eddy sampling task, compared to the usual rather shorter planning time. The improvement in robustness for the controller for several scenarios in this global trajectory optimization is also analyzed, together with comparison to shorter planning time for this autonomous vehicle and environmental data sampling type. As shown through results, the approach is able to provide several useful and non-intuitive solutions, improving in helpful ways. The trajectories for sub-mesoscale eddy sampling are thereby improved, in a way that might be useful for possible machine controller pondering or auto-piloting at open sea, when piloting user feedback is not available or even amidst the consecutive interruptions of user-intensive planning instructions. Managing complexity under limited resources and designing vessel navigation schedule plan under uncertain conditions within such extended mission planning time, therefore improves the mission quality as well. By optimizing trajectories with differential evolution and then visualizing them, we provide human-machine interaction for rapid knowledge discovery, data mining, and presentation of possibly large space satellite captured data sets (Big Data) analysis and exploitation.
URI: http://hdl.handle.net/10553/42223
ISBN: 9781509006229
DOI: 10.1109/CEC.2016.7743997
Fuente: 2016 IEEE Congress on Evolutionary Computation, CEC 24-29 July 2016, Vancouver, BC, Canada, p. 1727-1734
Colección:Actas de congresos
miniatura
pdf
Adobe PDF (1,54 MB)
Vista completa

Citas SCOPUSTM   

14
actualizado el 08-dic-2024

Citas de WEB OF SCIENCETM
Citations

16
actualizado el 08-dic-2024

Visitas

70
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.